Electronic Supplementary Information

for

Highly reactive α-bromoacrylate monomers and Michael acceptors by Cu(II)Br₂dibromination of acrylates and instantaneous E2 by ligand

Adrian Moreno,^{a,b} Jãnis Lejnieks,^a Liang Ding,^a Silvia Grama,^a Marina Galià,^b Gerard Lligadas,^{a,b} and Virgil Percec^a

^aRoy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
^bLaboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain

*Correspondence to: V. Percec (E-mail: percec@sas.upenn.edu)

Experimental

Materials

Methyl acrylate (MA) (99%) and butyl acrylate (BA) (99+%) both from Acros were passed over a short column of basic Al₂O₃ before use to remove the radical inhibitor. Cu(II)Br₂ (99%, Alfa Aesar), Cu(II)Cl₂ (98%, Fluka), tris(2-aminoethyl)amine (TREN, 99%, Acros) and CDCl₃ (99.8%, Cambridge Isotope Laboratories Inc) were used as received. Acetonitrile (99.5+%, EMD Chemicals Inc) was distilled before use. Hexamethylated tris(2-aminoethyl)amine (Me₆-TREN) was synthesized following a literature procedure.¹

Techniques

500 MHz ¹H-NMR spectra were recorded on a Bruker DRX500 NMR instrument at 28 $^{\circ}$ C in CDCl₃ containing tetramethylsilane (TMS) as internal standard.

Typical procedure for the Cu(II)Br₂-promoted dibromination of MA or BA in acetonitrile

Cu(II)Br₂ (0.1 g, 0.448 mmol) was weighted in a vial containing a magnetic stirring bar, both dried overnight in an oven, and deoxygenized by purging with N₂ for 10 min at 25 °C. In another vial acetonitrile (1 mL) and monomer (MA 21 μ L, or BA 32 μ L, 0.224 mmol) were added and the mixture was deoxygenized by bubbling with N₂ for 30 min at 0 °C. Then, the deoxygenized mixture of monomer and acetonitrile was transferred via a degassed syringe and added under N₂ on top of the Cu(II)Br₂, to start the reaction. Samples of 0.1 mL were periodically withdrawn from the reaction mixture, diluted in CDCl₃, filtered over cotton to immediately record the ¹H-NMR spectra. Further experiments showed that this reaction can be carried out in the presence of oxygen. The conversion of MA or BA onto methyl 2,3-dibromopropionate was calculated by comparison of integrals (j) from the ¹H-NMR spectra as follows:

Conversion (%) =
$$\left(\frac{\int Ha'}{\int Ha' + \int Ha}\right) * 100$$

Typical procedure for the base-promoted dehydrobromination of methyl 2,3dibromopropionate mediated by Me₆-TREN or TREN

Methyl 2,3-dibromopropionate (1.89 μ L, 0.015 mmol), 0.6 mL CDCl₃ and ligand (TREN 0.74 μ L, or Me₆-TREN 1.33 μ L, 0.005 mmol) were placed in an NMR tube. The reactions were monitored by ¹H-NMR.

References

¹M. Ciampolini and N. Nardi, *Inorg. Chem.* 1966, 5, 41–44.