Supporting Information

Accelerating the acidic degradation of a novel thermoresponsive polymer

by host-guest interaction

Peng Wei, ^{a,b} Stefan Götz, ^{a,b} Stephanie Schubert, ^{a,c} Johannes C. Brendel, ^{a,b} Ulrich S. Schubert *, ^{a,b}

^a Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany

^b Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University, Philosophenweg 7, 7743 Jena, Germany

^c Institute of Pharmacy, Department of Pharmaceutical Technology, Friedrich Schiller University Jena, Otto-Schott-Str. 41, 07745 Jena, Germany

*Correspondence to: U. S. Schubert (E-mail: ulrich.schubert@uni-jena.de)

Synthesis of Compounds and Characterizations

Scheme S1 Synthetic route of CTA 4.

Synthesis of 3

Compound **1** (1 g), DMAP (62.16 mg), and compound **2** (825 µL) were dissolved in anhydrous dichloromethane (20 mL). The flask was cooled to 0 °C in ice-water bath. Then DCC (1.2 g) in 10 mL of anhydrous dichloromethane was added dropwise and stirred for 24 h at room temperature. After filtration, the filtrate was concentrated and further purified by silica gel column chromatography using dichloromethane:*n*-hexane (2:1, v/v). After evaporating solvent in vacuum, a yellow liquid **3** was obtained (1.3 g, yield: 81.3%). ¹H NMR (300 MHz, chloroform-*d*) δ 4.83 (q, *J* = 7.4 Hz, 1H), 4.27 – 4.04 (m, 2H), 3.41 (dt, *J* = 14.1, 7.1 Hz, 4H), 1.87 (dt, *J* = 8.1, 6.6 Hz, 2H), 1.78 – 1.55 (m, 7H), 1.53 – 1.35 (m, 6H), 0.96 (t, *J* = 7.3 Hz, 3H).

Synthesis of 4

Compound **3** (800 mg) and 4-methylpyridine (792 μ L) were added into a flask and reacted at 85 °C for 24 h, then purified by silica gel column chromatography using dichloromethane:methanol (10:1, v/v). After evaporating solvent under vacuum, a yellow syrupy liquid **4** was obtained (600 mg, yield: 60.7%).¹H NMR (300 MHz, chloroform-*d*) δ 9.47 – 9.17 (m, 2H), 7.87 (d, *J* = 6.3 Hz, 2H), 4.98 (t, *J*

= 7.4 Hz, 2H), 4.79 (q, *J* = 7.4 Hz, 1H), 4.26 – 4.02 (m, 2H), 3.37 (td, *J* = 7.2, 2.6 Hz, 2H), 2.70 (s, 3H), 2.22 – 1.92 (m, 2H), 1.77 – 1.56 (m, 7H), 1.51 – 1.35 (m, 6H), 0.94 (t, *J* = 7.3 Hz, 3H).

Figure S1 ¹H NMR (CDCl₃, 300 MHz) spectrum of 3.

Figure S2 ¹H NMR (CDCl₃, 300 MHz) spectrum of CTA 4.

Figure S3 ¹H NMR (DMSO- d_6 , 300 MHz) spectrum of P2.

Figure S4 SEC measurement of P1, P2 and P3.

Figure S5 Transmittance changes of polymer **P2** with or without **H1** and **H2** by heating and cooling down temperature. Heating and cooling rate: 0.2 °C min⁻¹.

Figure S6 Transmittance changes of polymer **P2** without addition of **H2** and with different ratios of **H2** (1 eq., 1.5 eq. and 2 eq.). Heating rate: 0.2 °C min⁻¹.

Figure S7 ¹H NMR (D₂O, 300 MHz) spectrum of complexation at 23 $^{\circ}$ C. A) 1 eq. H1, B) mixture of H1 and P2, C) P2 (5 mg mL⁻¹).

Figure S8 ¹H NMR (D₂O, 300 MHz) spectrum of complexation at 37 $^{\circ}$ C. A) 1 eq. H1, B) mixture of H1 and P2, C) P2 (5 mg mL⁻¹).

Figure S9 ¹H NMR (D₂O, 300 MHz) spectrum of complexation at 45 $^{\circ}$ C. A) 1 eq. H1, B) mixture of H1 and P2, C) P2 (5 mg mL⁻¹).

Figure S10 ¹H NMR (D₂O, 300 MHz) spectrum of complexation at 23 $^{\circ}$ C. A) 1 eq. H2, B) mixture of H2 and P2, C) P2 (5 mg mL⁻¹).

Figure S11 ¹H NMR (D₂O, 300 MHz) spectrum of complexation at 37 $^{\circ}$ C. A) 1 eq. H2, B) mixture of H2 and P2, C) P2 (5 mg mL⁻¹).

Figure S12 ¹H NMR (D₂O, 300 MHz) spectrum of complexation at 45 $^{\circ}$ C. A) 1 eq. H2, B) mixture of H2 and P2, C) P2 (5 mg mL⁻¹).

Hydrolysis measurement of polymers or complexation between polymer and pillar[5] arene in D_2O at different pH at 37 $^{\circ}C$

Figure S13 ¹H NMR (D₂O, 300 MHz) spectrum of hydrolysis of **P2** (5 mg mL⁻¹) at pH 7.4. A) 0 h, B) 3 h, C) 24 h, D) 48 h, E) 96 h, F) 120 h, G) 168 h, H) 216 h, and I) 264 h.

Figure S14 ¹H NMR (D₂O, 300 MHz) spectrum of hydrolysis of **P2** (5 mg mL⁻¹) with 1 eq. **H1** at pH 7.4. A) 0 h, B) 3 h, C) 24 h, D) 48 h, E) 96 h, F) 120 h, G) 168 h, H) 216 h, and I) 264 h.

Figure S15 ¹H NMR (D₂O, 300 MHz) spectrum of hydrolysis of **P2** (5 mg mL⁻¹) with 1 eq. **H2** at pH 7.4. A) 0 h, B) 24 h, C) 48 h, D) 96 h, E) 120 h, F) 168 h, G) 216 h, and H) 264 h.

Figure S16 ¹H NMR (D₂O, 300 MHz) spectrum of hydrolysis of **P2** (5 mg mL⁻¹) with 5 eq. **G1** at pH 7.4. A) 0 h, B) 24 h, C) 48 h, D) 96 h, E) 120 h, F) 168 h, G) 216 h, and H) 264 h.

Figure S17 ¹H NMR (D₂O, 300 MHz) spectrum of hydrolysis of **P2** (5 mg mL⁻¹) at pH 5.2. A) 0 h, B) 3 h, C) 24 h, D) 48 h, E) 96 h, F) 120 h, G) 168 h, H) 216 h, and I) 264 h.

Figure S18 ¹H NMR (D₂O, 300 MHz) spectrum of hydrolysis of **P2** (5 mg mL⁻¹) with 1 eq. **H1** at pH 5.2. A) 0 h, B) 3 h, C) 24 h, D) 48 h, E) 96 h, F) 120 h, G) 168 h, H) 216 h, and I) 264 h.

Figure S19 ¹H NMR (D₂O, 300 MHz) spectrum of hydrolysis of **P1** (5 mg mL⁻¹) at pH 5.2 A) 0 h, B) 24 h, C) 48 h, D) 96 h, E) 120 h, F) 168 h, G) 216 h, and H) 264 h.

Figure S20 ¹H NMR (D₂O, 300 MHz) spectrum of hydrolysis of **P1** (5 mg mL⁻¹) with 1 eq. **H1** at pH 5.2. A) 0 h, B) 24 h, C) 48 h, D) 96 h, E) 120 h, F) 168 h, G) 216 h, and H) 264 h.

Figure S21 ¹H NMR (D₂O, 300 MHz) spectrum of hydrolysis of **P3** (5 mg mL⁻¹) at pH 5.2. A) 0 h, B) 24 h, C) 48 h, D) 96 h, E) 120 h, F) 168 h, G) 216 h, and H) 264 h.

Figure S22 ¹H NMR (D₂O, 300 MHz) spectrum of hydrolysis of **P3** (5 mg mL⁻¹) with 1 eq. **H1** at pH 5.2. A) 0 h, B) 24 h, C) 48 h, D) 96 h, E) 120 h, F) 168 h, G) 216 h, and H) 264 h.

Figure S23 ¹H NMR (D₂O, 300 MHz) spectrum of hydrolysis of **P2** (5 mg mL⁻¹) with 1 eq. **H2** at pH 5.2. A) 0 h, B) 24 h, C) 48 h, D) 96 h, E) 120 h, F) 168 h, G) 216 h, and H) 264 h.

Figure S24 ¹H NMR (D₂O, 300 MHz) spectrum of hydrolysis of **P2** (5 mg mL⁻¹) with 5 eq. **G1** at pH 5.2. A) 0 h, B) 24 h, C) 48 h, D) 96 h, E) 120 h, F) 168 h, G) 216 h, and H) 264 h.

Association constant measurement between P2 and H1 or P2 and H2 by ITC

Figure S25 Association constant between P2 and H1.

Figure S26 Association constant between P2 and H2.