Supporting Information

Reinvestigation of the Mechanism of Polymerization of β -Butyrolactone from 1,5,7-Triazabicyclo[4.4.0]dec-5-ene.

S. Moins, C. Henoumont, J. De Winter, A.Khalil, S. Laurent, S. Cammas-Marion and O. Coulembier

Table of content :

- Polymerization of BL from a PyCOOH/TBD mixture at 60°C in bulk : page 2
 - 1) Protocol : page 2
 - 2) Table of results : page 2
 - 3) SEC evolution : page 2
- Tables : page 3
 - 1) Table S1 : page 3
- Figures : page 4
 - 1) Figure S1-a : page 4
 - 2) Figure S1-b : page 4
 - 3) Figure S2 : page 5
 - 4) Figure S3 : page 6
 - 5) Figure S4 : page 6
 - 6) Figure S5 : page 7

Polymerization of BL from a PyCOOH/TBD mixture (bulk, 60°C, [BL]₀/[TBD]₀ = 190)

In a glove box, a dried vial was charged with 200 mg of BL (n = 2.32×10^{-3} mol), 6 mg of PyCOOH (n = 2.44×10^{-5} mol) and a stirring bar. After solubilization of the PyCOOH (2 hours), 200 mg of BL were added in order to target a final DP of 190. 3.2 mg of TBD (n = 2.3×10^{-5} mol) were then introduced and the vial was sealed. Out of the box, the medium was immersed in a 60°C oil bath to start the polymerization. A kinetic experiment was started after 2 minutes of thermal homogenization. Samples were withdrawn after precise reaction times and analyzed by SEC analysis using a DRI/UV detector.

Polym. time (min)	M _n SEC (g.mol ⁻¹)	Ð _M
20	250	1.08
40	640	1.19
60	1200	1.25
80	1350	1.24
120	1900	1.27
160	2700	1.23
210	3100	1.25
270	3200	1.30
350	3550	1.30

<u>Tables</u>

Table S1. Molecular characterizations of cyclo-PdMMLABe obtained from ZROP of dMMLABe by IMes carbene in
THF at r.t. ([dMMLABe] ₀ = 1.45M; [dMMALBe] ₀ /[IMes] ₀ = 116)

Polym. time (min)	Conv. (%)	M _n SEC (g.mol ⁻¹)	Ð _M
8	31.5	4220	1.32
28ª	59	7880	1.34
72	90	12000	1.29
104	94.4	14700	1.26
150	95.7	16400	1.26

a) The MALDI analysis of that sample presents a Mn of 13600 g/mol⁻¹ and a cyclic structure as demonstrated by isotopic simulations

Figures

Figure S1-a. ¹H-NMR analysis of the PBL₈ crude medium (recorded in CDCl₃ at 21°C)

Figure S1-b. ¹H-NMR comparison (recorded in $CDCl_3$ at 21°C) of the PBL_8 crude medium before (blue spectrum) and after addition of 10 mol% of water (red spectrum)

Figure S2. ¹H-NMR spectra of a mixture of benzoic acid/TBD salt and BL (1/1.5) recorded after 12 hours at r.t. (A) and 12 hours at r.t. + 1 hour at 60°C (B). * correspond to BL monomer signal. R corresponds to H or a BL unit. *E* and *Z* represent both crotonate isomers. Signals appearing between 3.2 and 4 are hypothetically attributed to TBD protons from TBD interacting with crotonic acid, butyric acid and benzoic acid (if any).

Figure S3. Percentage of crotonic acid/TBD salt calculated by ¹H-NMR analyses in CD₃CN in function of the temperature from a 1:1 crotonic acid/TBD mixture.

Figure S4. Evolution of TBD protonic signals (centered between 1.8 and 2.1 ppm, in $CDCl_3$) in function of the conversion as recorded during the BL bulk ROP ([BL]₀/[TBD]₀ = 50, 60°C)

Figure S5. ESI-MS analysis of PBL₈ (realized without addition of Nal)

Figure S6. Examples of diffusion curves obtained on a solution of PBL_{48} in CD_3CN , a) on one of the peaks of the polymer at 1.2 ppm and b) on one of the peaks of TBD at 3.15 ppm. The linear evolution is, according to equation 1 (see experimental part), typical of a mono-diffusing species.