Electronic Supplementary Information (ESI)

Transition-metal-free and halogen-free controlled synthesis of poly(3-alkylthienylene vinylene) via Horner-Wadsworth-Emmons condensation reaction

Eisuke Goto,* Yuto Ochiai, Mitsuru Ueda and Tomoya Higashihara*

Department of Organic Materials Science, Graduate School of Organic Materials

Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan

Corresponding Authors

Eisuke Goto* (E-mail: eisukegoto115@gmail.com)

Tomoya Higashihara* (E-mail: thigashihara@yz.yamagata-u.ac.jp)

Table of contents

Materials	3
Measurement and characterization	3
Synthesis	5
¹ H and ¹³ C NMR spectra	13
SEC UV traces	21
Polymerization rate	22
GIWAXS	23
TGA curves	24
DSC curves	25
UV-vis absorption	26
Reference	27

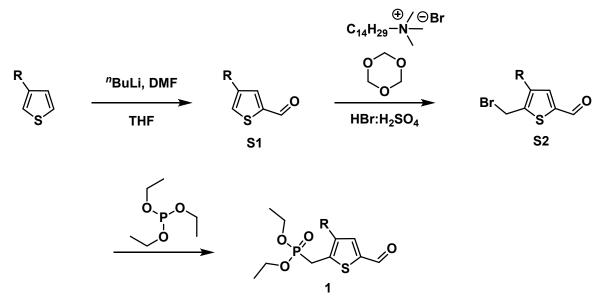
Materials

Tetrahydrofuran, stabilizer free (THF, 99.5%, Kanto Chemical Co., Inc.) was refluxed over sodium benzophenone under nitrogen for 2 h, then distilled just before use. 3-(2-Ethylhexyl)thiophene was synthesized according a previously reported procedure.¹ All other reagents were purchased from Sigma-Aldrich Japan K.K., Tokyo Chemical Industry Co., Ltd., Kanto Chemical Co., Inc. or Wako Pure Chemical Industries, Ltd., and used as received.

Measurement and characterization

¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on a JEOL JNM-ECX400 in chloroform-*d* at 25 °C or 40 °C calibrated to chloroform as a standard ($\delta_{\rm H}$ 7.26). $M_{\rm n}$ and $M_{\rm w}/M_{\rm n}$ were measured by size exclusion chromatography (SEC) on a Jasco GULLIVER 1500 equipped with an absorbance detector (UV, λ = 254 nm), and three polystyrene gel columns based on a conventional calibration curve using eight polystyrene standards. THF (40 °C) was used as a carrier solvent at a flow rate of 1.0 mL/min.

For Grazing-incidence wide-angle x-ray scattering (GIWAXS), P3EHTV was first dissolved in chloroform (4 mg/0.2 mL), followed by filtering through 0.45 μ m pore size PTFE membrane syringe filters, and then spin-casted onto Si wafers.


Measurements were conducted at the beamline BL46XU of SPring-8, Japan (proposal No. 2017B1744). The sample was irradiated at a fixed incident angle α_i on the order of 0.12° through a Huber diffractometer with an X-ray energy of 12.398 keV (X-ray wavelength $\lambda = 0.10002$ nm), and the GIWAXS patterns were recorded with a 2D image detector (Pilatus 300K) with the sample-to-detector distances of 172.5 mm. The scattering vectors q_v and q_z for GIWAXS are defined in Equation (1).

$$(q_{\rm y}, q_{\rm z}) = (2 \pi (\sin \psi \cos \alpha_{\rm f}) / \lambda, 2 \pi (\sin \alpha_{\rm f} + \sin \alpha_{\rm i}) / \lambda)$$
(1)

where ψ is out-of-plane angle, $\alpha_{\rm f}$ is exit angle.

Thermal analysis was performed on a Seiko EXSTAR 6000 TG/DTA 6300 thermal analyzer at a heating rate of 10 °C/min for thermogravimetry analysis (TGA) and a TA Instruments Q-100 connected to a cooling system at a heating rate of 10 °C/min for differential scanning calorimetry (DSC). The UV–vis spectra were recorded by a JASCO V-670 spectrophotometer. For the solid state spectra, polymers were first dissolved in chloroform (~ 1 mg/mL) and then drop-casted onto quartz substrate. The polymer films were then thermally annealed at 150 °C for 1 h under vacuum.

Synthesis

R = (a) 2-ethylhexyl, (b) dodecyl

Scheme S1. Synthesis of monomer precursor (1)

Synthesis of 3-(2-ethylhexyl)-5-thiophenecarboxyaldehyde (S1a)

3-(2-Ethylhexyl)thiophene (4.91 g, 25.0 mmol) was placed in a 200 mL twonecked flask purged with N₂. After dissolving in anhydrous THF (100 mL), the solution was cooled down to -78 °C. A 2.65 M hexane solution of "BuLi (9.4 mL, 25 mmol) was added slowly dropwise. The reaction mixture was stirred at -78 °C for 30 min, then at room temperature for 1 h and the color changed from transparent to pale brown. Anhydrous *N*,*N*-dimethylformamide (2.5 mL, 32 mmol) was added dropwise at -78 °C and stirred at room temperature for 2 h, followed by quenching with 5 M HCl aq. (5 mL) at 0 °C. The quenched solution was extracted with Et₂O and washed with water and brine. The organic phase was dried over anhydrous magnesium sulfate, rotary evaporated and purified by silica gel chromatography using hexane/ethylacetate (19/1) as eluent to afford **S1a** (containing 6% of 3-(2-ethylhexyl)-2-thiophenecarboxyaldehyde (**S1a'**) which was removed in the next stage) as a pale yellow oil (5.40 g, 96%).

¹H NMR (400 MHz, chloroform-*d*): δ 10.0 (s, **S1a'**), 9.85 (s, 1H, **S1a**), 7.61 (d, *J* = 5.2 Hz, **S1a'**), 7.56 (s, 1H, **S1a**), 7.32 (s, 1H, **S1a**), 6.96 (d, *J* = 4.8 Hz, **S1a'**), 2.85 (d, *J* = 7.2 Hz, **S1a'**), 2.55 (d, *J* = 6.8 Hz, 2H, **S1a**), 1.68-1.47 (m, 1H), 1.35-1.14 (m, 8H), 0.92-0.79 (m, 6H). ¹³C NMR (101 MHz, chloroform-*d*) δ 183.07 (**S1a**), 182.42 (**S1a'**), 152.24 (**S1a'**), 143.56 (**S1a**), 143.49 (**S1a**), 138.34 (**S1a'**), 137.78 (**S1a**), 134.28 (**S1a'**), 131.30, 41.60 (**S1a'**), 40.38 (**S1a**), 34.15, 32.74 (**S1a'**), 32.73(**S1a**), 28.87, 25.70 (**S1a'**), 25.51 (**S1a**), 23.03, 14.17, 10.84. Anal. Calcd. for C₁₃H₂₀OS (%): C, 69.59; H, 8.99; S. 14.29. Found (%): C, 69.69; H, 9.65; S. 14.16.

Synthesis of 3-dodecyl-5-thiophenecarboxyaldehyde (S1b)

3-Dodecylthiophene (4.46 g, 17.7 mmol) was reacted and purified by following the same procedure as described for **S1a**. **S1b** was obtained as a pale yellow oil (4.47 g, 90%) (containing 12% of 3-dodecyl-2-thiophenecarboxyaldehyde (**S1b'**) which was removed in the next stage). ¹H NMR (400 MHz, chloroform-*d*): δ 10.0 (s, **S1b'**), 9.87 (s, 1H, **S1b**), 7.64 (d, *J* = 5.2 Hz, **S1b'**), 7.61 (s, 1H, **S1b**), 7.37 (s, 1H, **S1b**), 7.01 (d, *J* = 5.2 Hz, **S1b'**), 2.96 (t, *J* = 7.8 Hz, **S1b'**), 2.63 (t, *J* = 7.8 Hz, 2H, **S1b**), 1.71-1.54 (m, 2H), 1.39-1.16 (m, 18H), 0.87 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, chloroform-*d*) δ 183.25 (**S1b**), 182.51 (**S1b'**), 153.16 (**S1b'**), 144.91 (**S1b**), 143.67 (**S1b**), 137.41, 134.62 (**S1b'**), 130.84 (**S1b'**), 130.62 (**S1b**), 32.06, 30.54, 30.26, 29.78, 29.69, 29.54, 29.50, 29.29, 22.84, 14.29. Anal. Calcd. for C₁₇H₂₈OS (%): C, 72.80; H, 10.06; S. 11.43. Found (%): C, 72.74; H, 10.02; S. 11.73.

Synthesis of 3-(2-ethylhexyl)-2-bromomethyl-5-thiophenecarboxy aldehyde (S2a)

S1a (5.27 g, 23.5 mmol) and hydrobromic acid (47 wt% in water) 100 mL were placed in a 200 mL two-necked flask with condenser and glass plug purged with N₂. After the mixture was cooled down to 0 °C, sulfulic acid (conc.) 33 mL, trioxane (2.32 g, 25.8 mmol) and tetradecyltrimethylammonium bromide (0.791 g, 2.35 mmol) were added and stirred at 60 °C for 5 h. Then, the reaction mixture was poured into 300 mL of water. The solution was extracted with chloroform, washed with water and brine. The organic phase was dried over anhydrous magnesium sulfate, rotary evaporated and purified by silica gel chromatography using hexane/ethylacetate (9/1) as eluent to afford S2a as a dark yellow oil (6.19 g, 83%).

¹H NMR (400 MHz, chloroform-*d*): δ 9.85 (s, 1H), 7.49 (s, 1H), 4.65 (s, 1H), 2.54 (d, *J* = 6.8 Hz, 2H), 1.68-1.57 (m, 1H), 1.40-1.17 (m, 8H), 0.94-0.84 (m, 6H). ¹³C NMR (101 MHz, chloroform-*d*) δ 183.01, 144.35, 142.91, 142.12, 138.19, 40.33, 32.73, 28.96, 25.88, 24.13, 23.11, 14.23, 10.98. Anal. Calcd. for C₁₄H₂₁BrOS (%): C, 53.00; H, 6.67; S. 10.10. Found (%): C, 53.26; H, 6.79; S. 9.93.

Synthesis of 3-dodecyl-2-bromomethyl-5-thiophenecarboxy aldehyde (S2b)

S1b (3.95 g, 14.1 mmol) was reacted and purified by following the same procedure as described for **S2a**. **S2b** was obtained as a white solid (3.92 g, 75%).

¹H NMR (400 MHz, chloroform-*d*): δ 9.84 (s, 1H), 7.53 (s, 1H), 4.64 (s, 1H), 2.61 (t, *J* = 8.0 Hz, 2H), 1.71-1.58 (m, 2H), 1.45-1.14 (m, 18H), 0.87 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, chloroform-*d*) δ 182.98, 143.85, 143.71, 142.25, 137.72, 32.07, 30.08, 29.78, 29.67, 29.56, 29.53, 29.49, 28.34, 24.01, 22.84, 14.27. Anal. Calcd. for C₁₈H₂₉BrOS (%): C, 57.90; H, 7.83; S. 8.59. Found (%): C, 58.04; H, 7.70; S. 8.43.

Synthesis of (3-(2-ethylhexyl)-5-formyl-thiophene-2-

ylmethyl)phosphonic acid diethyl ester (1a)

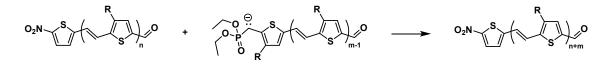
S2a (4.65 g, 14.7 mmol) and triethylphosphite (7.31 g, 44.0 mmol) were placed in a 20 mL one-necked flask purged with N₂. The solution was stirred at 100 °C for 3 h. After cooling down to room temperature, excess triethylphosphite was removed by a vacuum pump. The resulting crude dark red oil was purified by silica gel chromatography for three times using hexane/ethylacetate (4/6) as eluent to afford **1a** as a viscous reddish yellow oil (3.52 g, 64%).

¹H NMR (400 MHz, chloroform-*d*): δ 9.76 (d, *J* = 1.6 Hz, 1H), 7.46 (s, 1H), 4.14-3.95 (m, 4H), 3.30 (d, *J* = 22.0 Hz, 2H), 2.49 (d, *J* = 7.2 Hz, 2H), 1.60-1.42 (m, 1H), 1.40-1.05 (m, 8H), 0.94-0.70 (m, 6H). ¹³C NMR (101 MHz, chloroform-*d*) δ 182.77, 141.88 (d, *J* =8.7 Hz), 141.07 (d, *J* =3.8 Hz), 138.81 (d, *J* = 11.6 Hz), 138.34 (d, *J* = 3.8 Hz), 62.73 (d, *J* = 6.8 Hz), 40.46, 32.61, 28.99, 28.29, 26.85, 25.73, 23.12, 16.55, 16.49, 14.21, 10.96. Anal. Calcd. for C₁₈H₃₁O₄PS (%): C, 57.73; H, 8.34; S. 8.56. Found (%): C, 57.45; H, 8.58; S. 8.94.

Synthesis of (3-dodecyl-5-formyl-thiophene-2-ylmethyl)phosphonic acid diethyl ester (1b)

S2b (3.43 g, 9.19 mmol) was reacted and purified by following the same procedure as described for **1a**. **1b** was obtained as viscous reddish yellow oil (3.15 g, 80%).

¹H NMR (400 MHz, chloroform-*d*): δ 9.80 (d, J = 1.6 Hz, 1H), 7.53 (s, 1H), 4.18-3.99 (m, 4H), 3.33 (d, J = 22.0 Hz, 2H), 2.63-2.55 (m, 2H), 1.65-1.53 (m, 2H), 1.41-1.15 (m, 18H), 0.87 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, chloroform-*d*) δ 182.73, 142.77 (d, J = 8.7 Hz), 141.26 (d, J = 2.8 Hz), 138.25 (d, J = 11.6 Hz), 137.79 (d, J =3.8 Hz), 62.77 (d, J = 6.8 Hz), 32.05, 30.30, 29.77, 29.70, 29.61, 29.57, 29.48, 28.35, 28.25, 26.81, 22.82, 16.56, 16.50, 14.25. Anal. Calcd. for C₂₂H₃₉O₄PS (%): C, 61.37; H, 9.13; S. 7.45. Found (%): C, 61.06; H, 9.70; S. 7.27.


Post-polymerization of 1a for P3EHTV

Anhydrous THF (18 mL), 15-crown-5-ether (0.10 mL, 0.51 mmol) and a 1.9 M THF solution of sodium hexamethyldisilazide (0.28 mL, 0.53 mmol) were placed in a 50 mL two-necked flask purged with N_2 and cooled down to -78 °C. 2 mL 1a solution which was prepared in another 5 mL two-necked flask with **1a** (186 mg, 0.497 mmol) and anhydrous THF (2 mL) was also cooled down to -78 °C and immediately added to the reaction mixture. After stirring for 5 min, 5-nitro-2-thiophenecarboxaldehyde (6.5 mg, 0.041 mmol), which was dissolved in THF (0.5 mL), was added to start the polymerization. The polymerization was carried out at -40 °C for 30 min. After sampling an aliquot of the solution and quenching with 5 M HCl aq. for SEC characterization (M_n (SEC) = 4,200, M_w/M_n = 1.19), the 2nd monomer solution was added to the reaction mixture, which was prepared in another batch as described below. The solution was further stirred at -40 °C for additional 2 h, followed by quenching with 5 M HCl aq. (2 mL). The quenched solution was extracted with chloroform, washed with water, and analyzed by SEC directly before precipitation. The crude solution was poured into a large amount of methanol/water (200 mL/100 mL) to precipitate the polymer. After filtering and drying under vacuum, the crude P3EHTV was obtained as a dark blue solid (206 mg, 94%). SEC: $M_n = 6,900, M_w/M_n$ = 1.29.

Preparation of THF solution of the 2nd monomer

Anhydrous THF (8 mL), 15-crown-5-ether (0.10 mL, 0.51 mmol) and a 1.9 M THF solution of sodium hexamethyldisilazide (0.27 mL, 0.51 mmol) were placed in a 10 mL two-necked flask purged with N_2 and cooled down to -78 °C. 2 mL **1a** solution which was prepared in another 5 mL two-necked flask with **1a** (186 mg, 0.497 mmol) and anhydrous THF (2 mL) was also cooled down to -78 °C to afford the 2nd monomer solution.

Plausible mechanism for polymer coupling reaction between formylterminated P3EHTV and phosphonic-acid-ester-terminated P3EHTV.

Scheme S2. Polymer coupling reaction between formyl-terminated P3EHTV and phosphonic-acid-ester-terminated P3EHTV

¹H and ¹³C NMR spectra

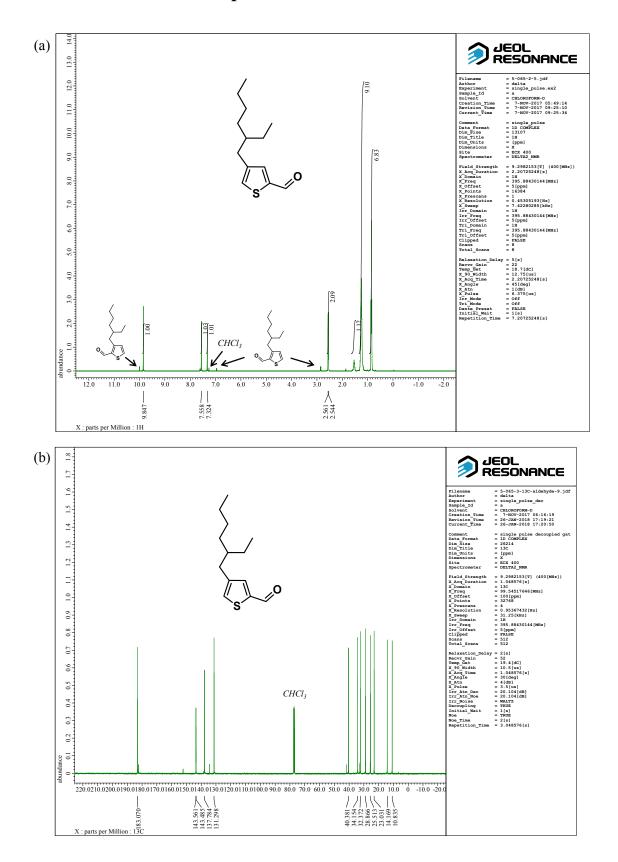


Figure S1. (a) ¹H NMR and (b) ¹³C NMR spectra of S1a.

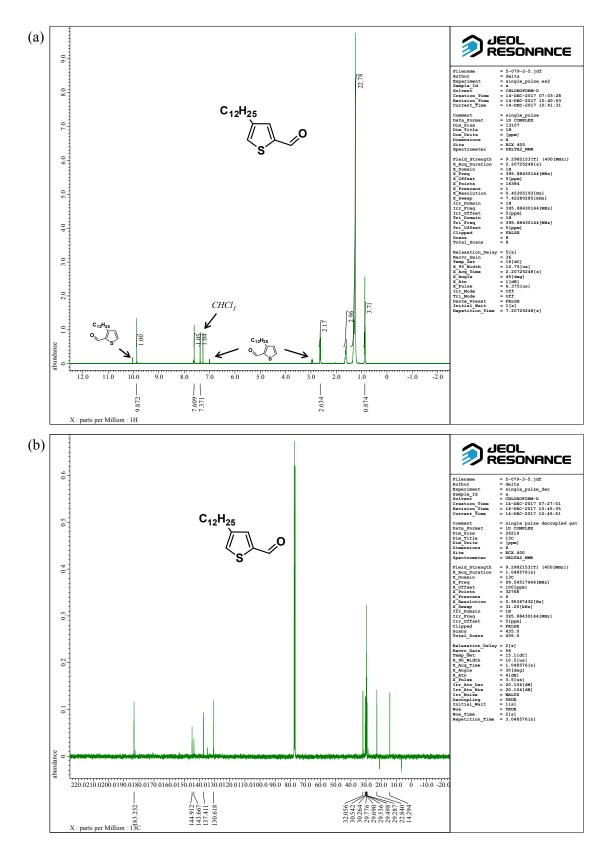


Figure S2. (a) ¹H NMR and (b) ¹³C NMR spectra of S1b.

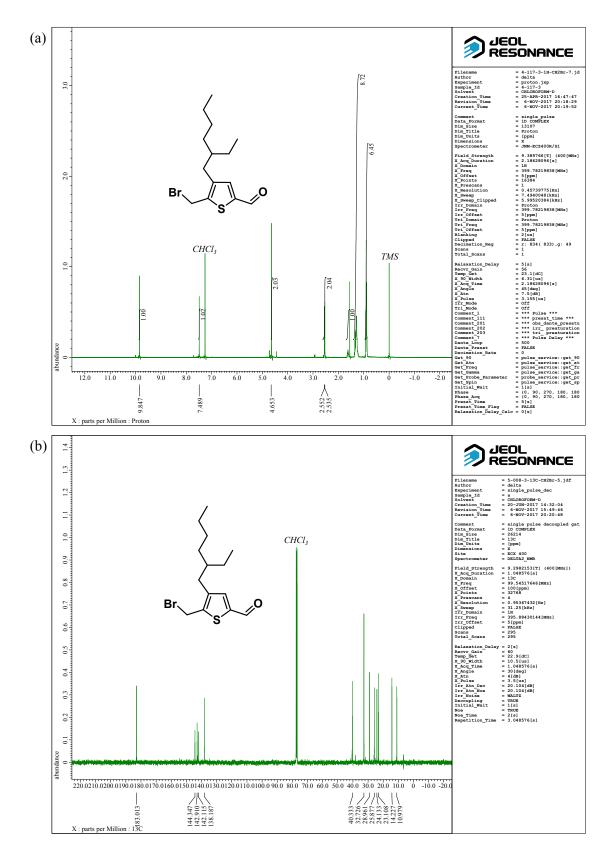


Figure S3. (a) ¹H NMR and (b) ¹³C NMR spectra of S2a.

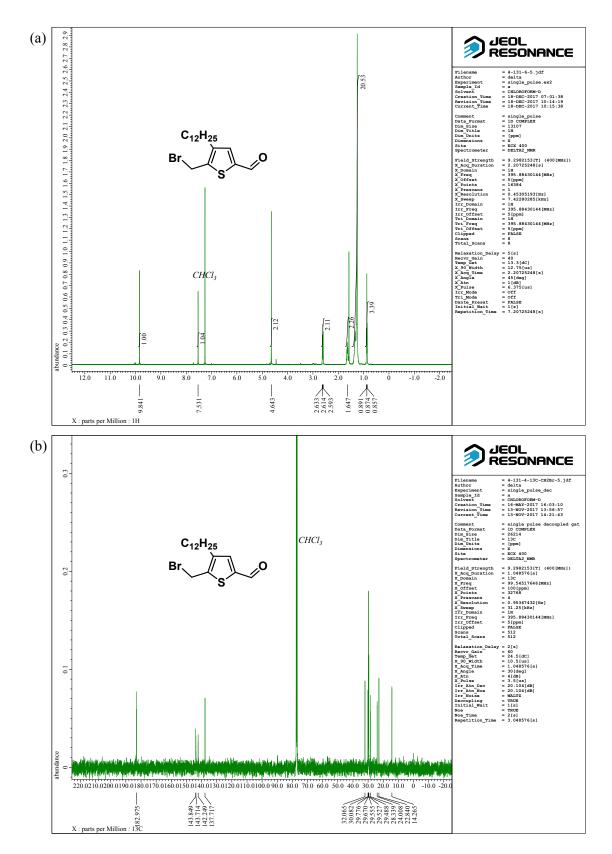


Figure S4. (a) ¹H NMR and (b) ¹³C NMR spectra of S2b.

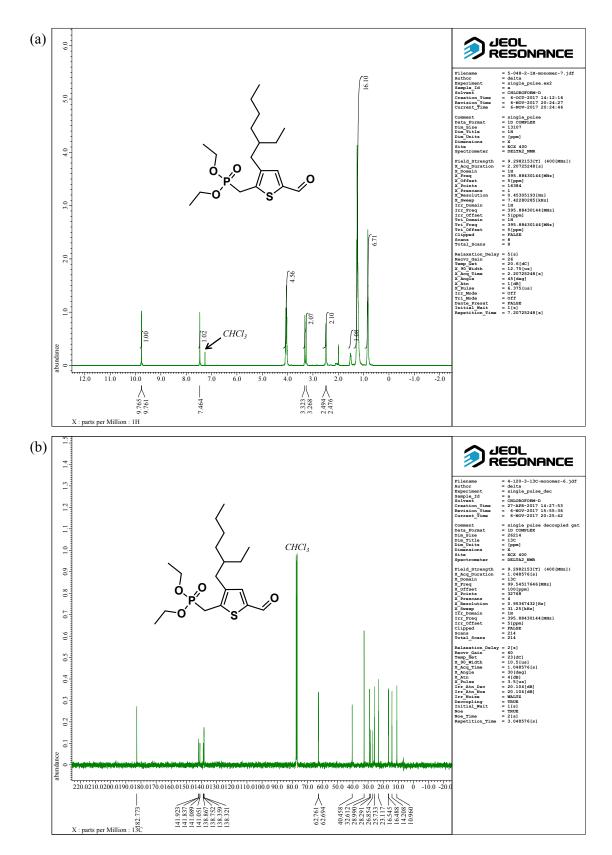


Figure S5. (a) ¹H NMR and (b) ¹³C NMR spectra of 1a.

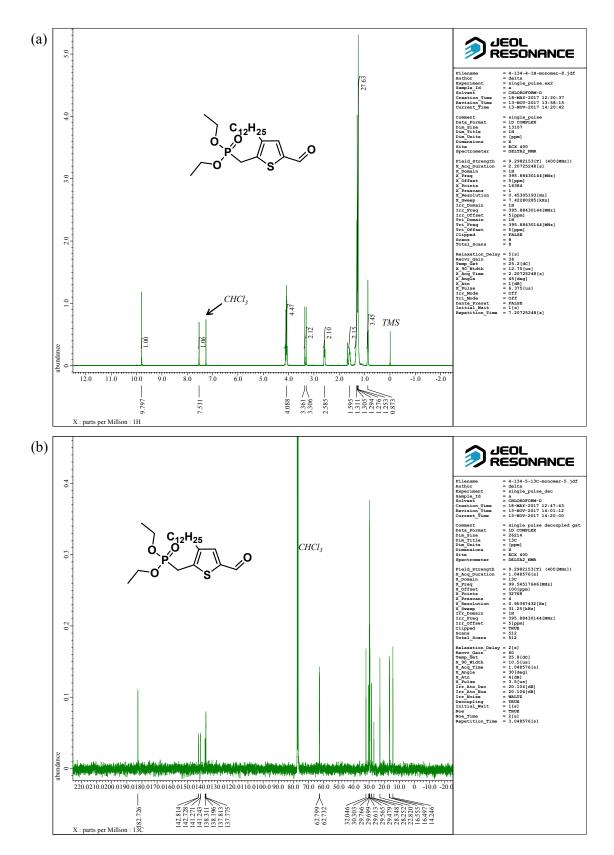
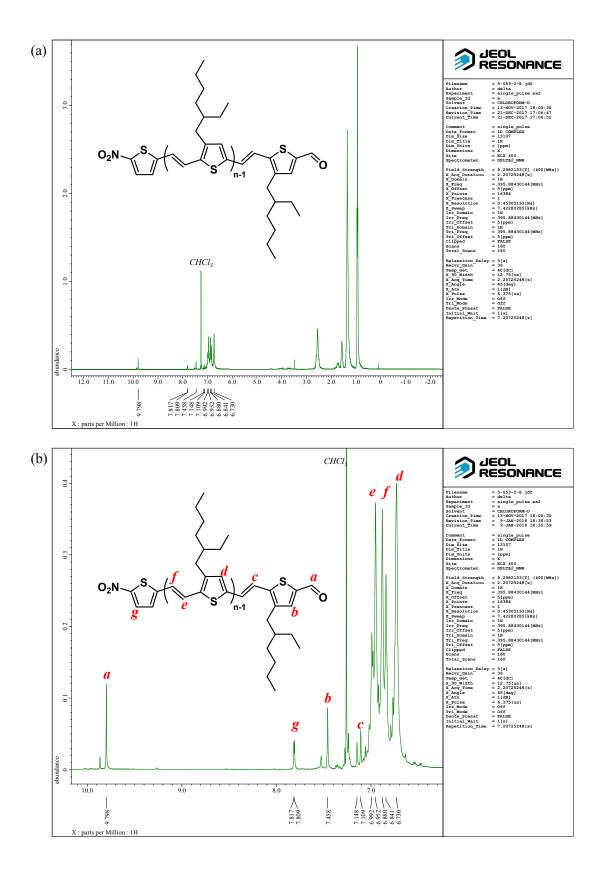



Figure S6. (a) ¹H NMR and (b) ¹³C NMR spectra of 1b.

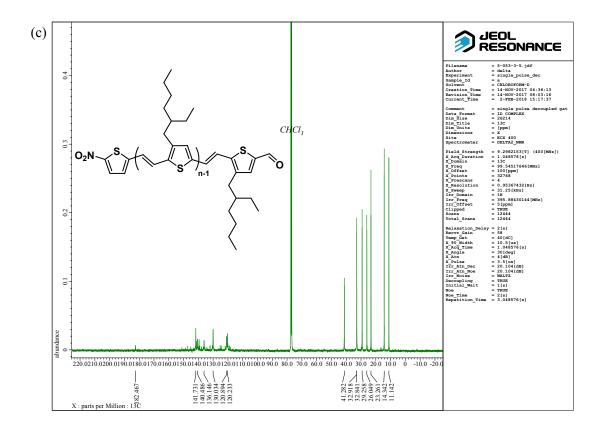


Figure S7. (a) ¹H NMR, (b) magnified ¹H NMR and (c) ¹³C NMR spectra of P3EHTV (Run 6).

SEC UV traces of P3EHTV

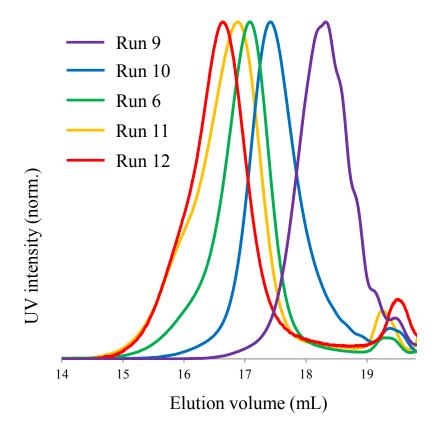


Figure S8. SEC UV traces of unfractionated P3EHTV samples with a different

[1a]/[2a] ratio (Runs 6 and 9-12).

Polymerization rate

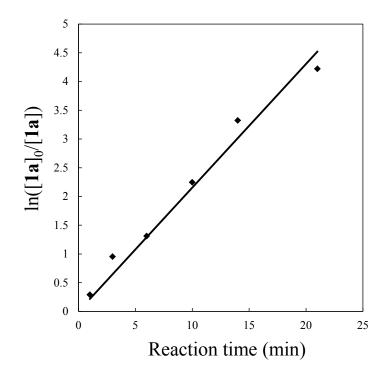
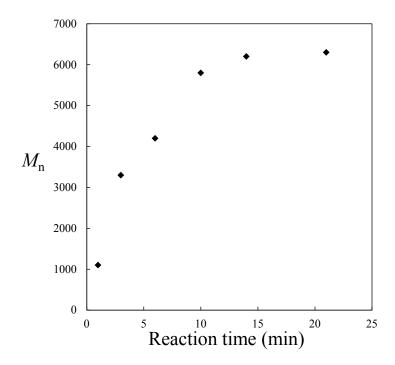



Figure S9. The plots of $\ln([1a]_0/[1a])$ as a function of time for synthesizing P3EHTV.

Figure S10. The plots of M_n as a function of time for synthesizing P3EHTV.

GIWAXS

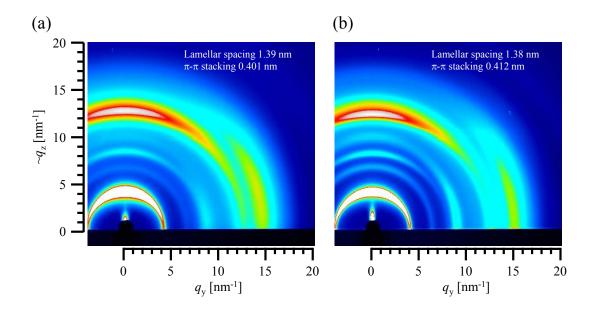


Figure S11. 2D-GIWAXS images of P3EHTV. Films were spin-cast on a Si wafer (a)

without annealing and (b) with annealing at 150 °C for 1 h under vacuum.

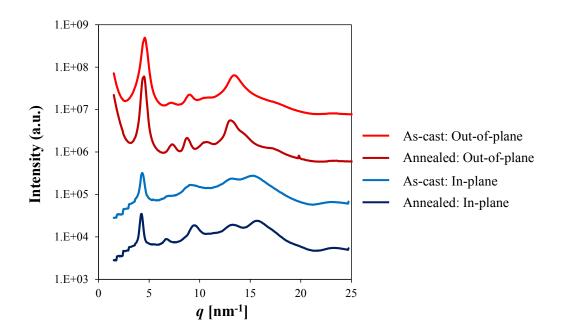


Figure S12. 1D-GIWAXS profiles of P3EHTV. Films were spin-cast on a Si wafer

with or without annealing at 150 °C for 1 h under vacuum.

TGA thermograms

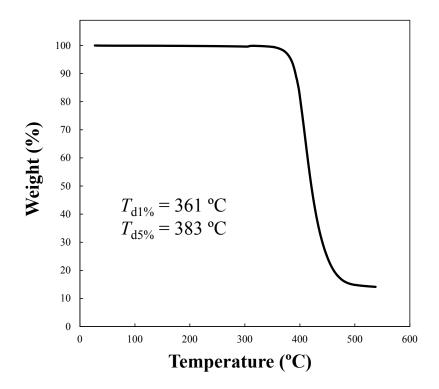


Figure S13. TGA curve of P3EHTV at a heating scan rate of 10 °C/min in N_2 .

DSC thermograms

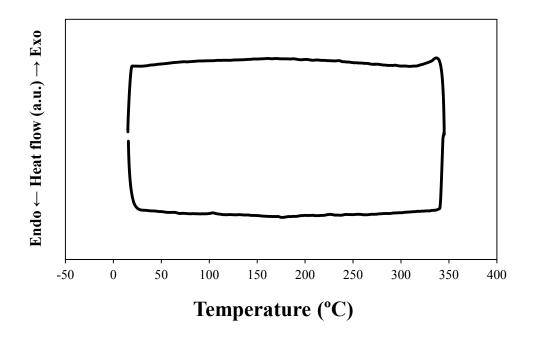


Figure S14. DSC curve of the 2^{nd} cycle heating and 2^{nd} cycle cooling scans of P3EHTV (10 °C/min in N₂).

UV-vis absorption

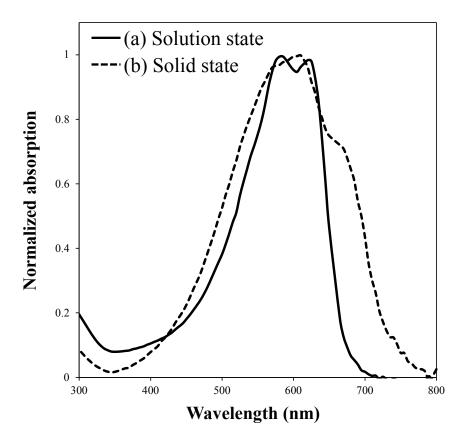


Figure S15. UV-vis absorption spectra of P3EHTV (a) in chloroform and (b) drop-

cast from chloroform and annealed at 150 °C at 1 h under vacuum.

Table S1. Optical properties of P3EHTV

	λ_{\max} (nm)	λ_{onset} (nm)	$E_{\rm g}({\rm eV})$
Solution state	578	670	1.85
Film state	603	742	1.67

Optical properties were determined by UV-vis spectroscopy.

Reference

1 Y. Zhang, K. Tajima, K. Hirota and K. Hashimoto, J. Am. Chem. Soc., 2008,

130, 7812–7813.