Supporting Information

L-proline based thermoresponsive and pH-switchable nanogel as drug delivery vehicle

Yolanda Salinas, Ana M. Castilla and Marina Resmini*

Department of Chemistry and Biochemistry, SBCS, Queen Mary University of London, Mile End Road E1 4NS, London, United Kingdom.

Email: m.resmini@qmul.ac.uk

1. Supporting Tables

The amounts of monomer, cross-linker (MBA), initiator (AIBN) and solvent (DMSO) needed to prepared the 32 nanogels described in the manuscript are showed in the following Table SI-1 and Table SI-2.

Fable SI-1. Chemica	l composition	for the pre	paration of	nanogels l	N1-N25
---------------------	---------------	-------------	-------------	------------	--------

Nanogel	Feeding ratio	NIPAM	NPAM	NAPr	MBA	AIBN	DMSO
nº	monomers:CL	m	onomers (mmo	I)	CL (mmol)	initiator (mmol)	(mL)
N1	90:0:0:10	0.884	0	0	0.098	0.011	10.36
N2	80:0:0:20	0.884	0	0	0.221	0.013	12.07
N3	70:0:0:30	0.884	0	0	0.379	0.016	14.25
N4	60:0:0:40	0.884	0	0	0.589	0.021	17.17
N5	50:0:0:50	0.884	0	0	0.884	0.026	21.26
N6	0:90:0:10	0	0.884	0	0.098	0.011	10.36
N7	0:80:0:20	0	0.884	0	0.221	0.013	12.07
N8	0:70:0:30	0	0.884	0	0.379	0.016	14.25
N9	0:60:0:40	0	0.884	0	0.589	0.021	17.17
N10	0:50:0:50	0	0.884	0	0.884	0.026	21.26
N11	0:0:90:10	0	0	0.799	0.089	0.010	10.23
N12	0:0:80:20	0	0	0.799	0.200	0.012	11.77
N13	0:0:70:30	0	0	0.799	0.342	0.015	13.75
N14	0:0:60:40	0	0	0.799	0.533	0.019	16.39
N15	0:0:50:50	0	0	0.799	0.799	0.024	20.09
N16	40:0:50:10	0.884	0	1.105	0.221	0.024	24.51
N17	40:0:40:20	0.884	0	0.884	0.442	0.026	25.09
N18	40:0:30:30	0.884	0	0.663	0.663	0.029	25.66
N19	40:0:20:40	0.884	0	0.442	0.884	0.031	26.24
N20	40:0:10:50	0.884	0	0.221	1.105	0.033	26.82
N21	0:40:50:10	0	0.884	1.105	0.221	0.024	24.51
N22	0:40:40:20	0	0.884	0.884	0.442	0.026	25.09
N23	0:40:30:30	0	0.884	0.663	0.663	0.029	25.66
N24	0:40:20:40	0	0.884	0.442	0.884	0.031	26.24
N25	0:40:10:50	0	0.884	0.221	1.105	0.033	26.82

Nanogel	Feeding ratio	NPAM	A-Pr-OH	NAPr	Aac	MBA	AIBN	DMSO
nº	monomers:CL	monomers (mmol)				CL (mmol)	initiator (mmol)	(mL)
N26	70:20:0:0:10	0.884	0.253	0	0	0.126	0.014	14.6
N27	75:15:0:0:10	0.884	0.177	0	0	0.118	0.013	14.33
N28	80:10:0:0:10	0.884	0.11	0	0	0.11	0.012	12.21
N29	85:5:0:0:10	0.884	0.052	0	0	0.104	0.012	11.23
N30	87.5:2.5:0:0:10	0.884	0.025	0	0	0.101	0.011	10.79
N31	85:0:2.5:2.5:10	0.884	0	0.026	0.026	0.104	0.014	10.74
N30D	87.5:2.5:0:0:10	0.884	0.025	0	0	0.101	0.011	10.79

Table SI-2. Chemical composition for the preparation of nanogels N26-N31

All the nanogels chemical composition was calculated by using the following equations:

$$n_{MBA} = n_{monomer} \cdot \frac{MBA \%}{monomer \%} (Eq. 1)$$

$$n_{AIBN} = (n_{monomer} + 2 \cdot n_{MBA}) \cdot 1 \% (Eq. 2)$$

$$V_{DMSO} = \left(m_{TOTAL \ monomers} \cdot \frac{100 \%}{1 \%} \cdot \frac{99 \%}{100 \%}\right) \cdot \frac{1}{\rho_{DMSO}} (Eq. 3)$$

	Feeding Composition				Conversion ^a					
Nanogel	NIPAM	NPAM	NAPr	MBA	NIPAM	NPAM	NAPr	MBA	Overall	
n°	% 1	nol monor	ner	% mol CL	%			%	%	
N1	90	-	-	10	63.7	-	-	80.9	65.4	
N2	80	-	-	20	67.2	-	-	91.7	72.4	
N3	70	-	-	30	77.6	-	-	93.4	82.2	
N4	60	-	-	40	81.1	-	-	95.7	86.7	
N5	50	-	-	50	75.9	-	-	94.5	85.1	
N6	-	90	-	10	-	59.3	-	80.2	61.7	
N7	-	80	-	20	-	61.3	-	86.1	66.9	
N8	-	70	-	30	-	64.6	-	86.9	71.4	
N9	-	60	-	40	-	72.1	-	92.7	80.5	
N10	-	50	-	50	-	71.7	-	92.4	82.4	
N11	-	-	90	10	-	-	95.7	99.3	96.2	
N12	-	-	80	20	-	-	95.4	98.8	96.2	
N13	-	-	70	30	-	-	96.7	99.0	97.5	
N14	-	-	60	40	-	-	96.4	98.4	97.2	
N15	-	-	50	50	-	-	97.8	98.4	98.1	
N16	40	-	50	10	81.6	-	94.2	94.8	89.1	
N17	40	-	40	20	82.7	-	96.0	95.4	90.3	
N18	40	-	30	30	81.0	-	94.1	96.8	89.4	
N19	40	-	20	40	78.9	-	79.0	91.6	84.0	
N20	40	-	10	50	78.4	-	94.0	95.5	88.3	
N21	-	40	50	10	-	78.1	91.6	94.2	86.5	
N22	-	40	40	20	-	75.8	90.5	93.3	85.3	
N23	-	40	30	30	-	77.9	91.5	94.6	87.2	
N24	-	40	20	40	-	79.1	93.8	95.6	88.9	
N25	-	40	10	50	-	76.7	92.2	93.4	86.7	

Table SI-3. Monomer, cross-linker and overall final conversions for nanogels N1-N25

Polymerisation conditions: 48h, 70 °C, DMSO-d₆, 1% AIBN and Cm=1%. ^aConversions were calculated from ¹H NMR spectra of initial and final polymerisation mixtures.

	Fe	eding Compos	sition	Conversion ^a				
Nanogel	NPAM A-Pro-OH		MBA	NPAM	A-Pro-OH	MBA	Overall	
n°	% mol monomer		% mol CL	%	%	%	%	
N26	70	20	10	67.5	87.3	85.5	73.6	
N27	75	15	10	71.9	87.7	85.8	75.8	
N28	80	10	10	66.3	85.5	82.0	70.0	
N29	85	5	10	71.7	89.15	89.2	74.2	
N30	87.5	2.5	10	62.0	79.5	85.8	65.0	

Table SI-4. Monomer, cross-linker and overall final conversions for nanogels N26-N30

Polymerisation conditions: 48h, 70 °C, DMSO-d₆, 1% AIBN and Cm=1%. ^aConversions were calculated from ¹H NMR spectra of initial and final polymerisation mixtures.

2. Supporting Figures

Figure SI-1. Partial ¹H NMR (400 MHz, 298 K, DMSO-*d*₆) spectra of the polymerisation mixtures for the preparation of nanogel **N1** as a representative example for all polymerisations. a) Spectrum acquired immediately after preparation of the polymerisation mixture, b) spectrum acquired after heating at 70 °C for 48 h. Peaks integrated to calculate conversions (Table SI-3 and Table SI-4) are indicated. 1,2,4,5-Tetramethylbenzene was used as internal standard (IS). Intensities have been scaled for clarity.

Figure SI-3. FT-IR spectra of monomers NIPAM, NPAM, NAPr and A-Pro-OH

Figure SI-4. FT-IR spectra of monomer NIPAM and nanogel N1 (NIPAM-MBA 90:10)

Figure SI-5. FT-IR spectra of monomer NPAM and nanogel N6 (NPAM-MBA 90:10)

Figure SI-6. FT-IR spectra of monomer NPAr and nanogel N11 (NPAr-MBA 90:10)

Figure SI-7. FT-IR spectra of monomer A-Pro-OH and nanogel N30 (NPAM-A-Pro-OH-MBA 87.5:2.5:10).

Figure SI-8. Dynamic light scattering of nanogel N1

Figure SI-9. Dynamic light scattering of nanogel N2

Figure SI-10. Dynamic light scattering of Nanogel N3

Figure SI-11. Dynamic light scattering of nanogel N4

Figure SI-12. Dynamic light scattering of nanogel N5

Figure SI-13. Dynamic light scattering of nanogel N6

Figure SI-14. Dynamic light scattering of nanogel N7

Figure SI-15. Dynamic light scattering of nanogel N8

Figure SI-16. Dynamic light scattering of nanogel N9

Figure SI-17. Dynamic light scattering of nanogel N10

Figure SI-18. Dynamic light scattering of nanogel N11

Figure SI-19. Dynamic light scattering of nanogel N12

Figure SI-20. Dynamic light scattering of nanogel N13

Figure SI-21. Dynamic light scattering of nanogel N14

Figure SI-22. Dynamic light scattering of nanogel N15

Figure SI-23. Dynamic light scattering of nanogel N16

Figure SI-24. Dynamic light scattering of nanogel N17

Figure SI-25. Dynamic light scattering of nanogel N18

Figure SI-26. Dynamic light scattering of nanogel N19

Figure SI-27. Dynamic light scattering of nanogel N20

Figure SI-28. Dynamic light scattering of nanogel N21

Figure SI-29. Dynamic light scattering of nanogel N22

Figure SI-30. Dynamic light scattering of nanogel N23

Figure SI-31. Dynamic light scattering of nanogel N24

Figure SI-32. Dynamic light scattering of nanogel N25

Figure SI-33. Dynamic light scattering of nanogel N26

Figure SI-34. Dynamic light scattering of nanogel N27

Figure SI-35. Dynamic light scattering of nanogel N28

Figure SI-36. Dynamic light scattering of nanogel N29

Figure SI-37. Dynamic light scattering of nanogel N30

Figure SI-38. Dynamic light scattering of nanogel N31

Figure SI-39. Dynamic light scattering of nanogel N30D

Figure SI-40 Transmittance change with increasing temperature for nanogels based on a) NIPAM (N1-N5), b) NPAM (N6-N10) and c) NAPr (N11-N15), cross-linked with different % mol MBA. Transmittance was measured at 500 nm at a polymer concentration of 1 mgmL⁻¹ in deionised water.

Figure SI-41. Transmittance change with increasing temperature for the nanogels based on a) NIPAM-NAPr (**N16-N20**) and b) NPAM-NAPr (**N21-N25**), cross-linked with different % mol MBA. Transmittance was measured at 500 nm at a polymer concentration of 1 mgmL⁻¹ in deionised water.

Figure SI-42. Transmittance changes at 500 nm with heating - cooling cycles for nanogels N1, N6 and N11 (conc =1 mg ml⁻¹). The temperature was cycled between 25 °C and 40 °C, 34 °C or 55 °C for N1, N6 and N11, respectively.

Figure SI-43. Dynamic light scattering measurements of a) nanogel **N6** (NPAM-MBA 90:10 % mol) and b) nanogel **N30** (NPAM-A-Pro-OH-MBA 87.5:2.5:10 % mol). Inset: a) TEM image of **N6**, b) TEM image of **N30**, non-stained and scale bar = 100 nm.

Figure SI-44. Zeta potential measurement of nanogel N26

Figure SI-45. Zeta potential measurement of nanogel N27

Figure SI-46. Zeta potential measurement of nanogel N28

Figure SI-47. Zeta potential measurement of nanogel N29

Figure SI-48. Zeta potential measurement of nanogel N30

Figure SI-49. Zeta potential measurement of nanogel N31

Figure SI-50. Zeta potential measurement of nanogel N30D

Figure SI-51. Transmittance changes with temperature for nanogels N26-N30, based on NPAM-10%MBA and copolymerized with A-Pro-OH from 20 to 2.5%.

Figure SI-52. Photographs showing the visual change of nanogel **N30** in water (conc =1mgmL⁻¹) with temperature at three different pHs (7.4, 6.5 and 5.2). Bottom photograph shows the solutions at a temperature below the VPPT and the top one shows the solutions at a temperature above the VPTT.

Figure SI-53. Zeta potential measurement of nanogel N30 at pH 7.4.

Figure SI-54. Zeta potential measurement of nanogel N30 at pH 6.5.

Figure SI-55. Zeta potential measurement of nanogel N30 at pH 5.2.

Figure SI-56. Transmittance changes at 500 nm with the temperature for nanogel N31 (based on monomers NPAM, AAc and NAPr) and N30D (based on monomers NPAM, A-Pro-OH) and loaded with NBA.