SUPPORTING INFORMATION

Functionalization of Polyfluorene-Wrapped Carbon Nanotubes via Copper-Mediated Azide-

Alkyne Cycloaddition

Darryl Fong, Grace M. Andrews, and Alex Adronov*

Department of Chemistry, McMaster University, Hamilton, Ontario, Canada

[*] Prof. Alex Adronov Department of Chemistry McMaster University 1280 Main St. W. Hamilton, ON L8S 4M1 Email: adronov@mcmaster.ca Tel: (905) 525-9140 x23514 Fax: (905) 521-2773

Experimental

General

Raw HiPCO SWNTs were purchased from NanoIntegris (batch #HR27-104, 10 wt % in anhydrous EtOH) and used without further purification. Reagents were purchased from commercial suppliers and used as received. Monomethyl ether polyethylene glycol (mPEG) was purchased from Fluka. Flash chromatography was performed using an IntelliFlash 280 system from Analogix. Unless otherwise noted, compounds were monitored using a variable wavelength detector at 254 nm. Solvent amounts used for gradient or isocratic elution were reported in column volumes (CV). Columns were prepared in Biotage® SNAP KP-Sil cartridges using $40 - 63 \mu m$ silica or $25 - 40 \mu m$ silica purchased from Silicycle. NMR was performed on a Bruker Avance 600 MHz or 700 MHz instrument and shift-referenced to the residual solvent resonance. Polymer molecular weights and dispersities were analyzed (relative to polystyrene standards) via GPC using a Waters 2695 Separations Module equipped with a Waters 2414 refractive index detector and a Jordi Fluorinated DVB mixed bed column in series with a Jordi Fluorinated DVB 10⁵ Å pore size column. THF with 2% acetonitrile was used as the eluent at a flow rate of 2.0 mL/min. Sonication was performed in a Branson Ultrasonic B2800 bath sonicator. Centrifugation of the polymer-SWNT samples was performed using a Beckman Coulter Allegra X-22 centrifuge. Infrared spectra were recorded using a Thermo Scientific Nicolet 6700 FT-IR spectrometer equipped with a Smart iTX attenuated total reflectance (ATR) sample analyzer. UV-Vis-NIR spectra were recorded on a Cary 5000 spectrometer in dual beam mode, using matching 10 mm guartz cuvettes. Slit widths for both excitation and emission were set to 10 nm band-pass, and correction factor files were applied to account for instrument variations. Raman spectra were collected using a Renishaw InVia Laser Raman spectrometer with a 500 mW HeNe Renishaw laser (633 nm, 1800 L/mm grating). Laser intensity was set to 1% for the 633 nm excitation wavelength for the polymer-SWNT samples. X-ray photoelectron spectroscopy (XPS) survey spectra were collected using a K-Alpha X-ray photoelectron spectrometer system from

Thermo Scientific.

Scheme S1. Synthesis of monomers 3 and 4.

Synthetic Procedures

2,7-dibromofluorene (1) (adapted from reference 1)

A round bottom flask equipped with a stir bar was charged with fluorene (33.2 g, 200 mmol), NBS (89.0 g, 500 mmol) and acetic acid (400 mL). While the mixture was stirring, conc. HBr (10 mL) was slowly added and then the reaction mixture was stirred at RT for 1.5 h. Water (200 mL) was added and the resulting suspension was filtered and washed with water to obtain an orange-white solid. The solid was recrystallized from a 1.5:1 v/v mixture of EtOH:acetone (~1.8 L total volume), and the mother liquor was recrystallized again from the same solvent mixture (~1.5 L total volume). The crops were combined to afford **1** (41.2 g, 64%) as a white solid. ¹H-NMR (600 MHz; CDCl₃): δ 7.67 (d, *J* = 1.1 Hz, 2H), 7.61 (d, *J* = 8.1, 1.8 Hz, 2H), 3.88 (s, 2H).

2,7-dibromo-9,9-dihexadecylfluorene (2) (adapted from reference 2)

A round bottom flask equipped with a stir bar was charged with 1 (2.7 g, 8.3 mmol), 1-bromohexadecane (6.36 g, 20.8 mmol), $^{n}Bu_{4}NBr$ (537 mg, 1.7 mmol), toluene (16.6 mL), and sat. KOH_(aq) (16.6 mL). The reaction mixture was heated to 60 °C and stirred vigorously for 1 h under a nitrogen atmosphere. The biphasic mixture was allowed to separate and the organic layer was isolated. The aqueous phase was

extracted twice with diethyl ether (2 x 20 mL) and the organic extracts were combined and concentrated *in vacuo* to obtain a viscous green oil. The crude product was purified by flash chromatography (100 g column, 100% hexanes over 10 CV) to afford **2** as a white solid (5.19 g, 81%). ¹H-NMR (600 MHz; CDCl₃): δ 7.51 (d, *J* = 8.0 Hz, 1H), 7.46-7.43 (m, 2H), 1.92-1.88 (m, 2H), 1.24-1.03 (m, 26H), 0.88 (t, *J* = 7.0 Hz, 3H), 0.59-0.57 (m, 2H).

2,7-dibromo-9,9-bis(6-bromohexyl)fluorene (3) (adapted from reference 1)

A round bottom flask equipped with a stir bar was charged with **1** (5 g, 15.4 mmol), 1,6-dibromohexane (37.7 g, 154 mmol), toluene (31 mL), and sat. KOH (31 mL). "Bu₄NBr (1.0 g, 3.1 mmol) was then added and the reaction mixture was heated to 60 °C and stirred vigorously for 1 h under a nitrogen atmosphere. The biphasic mixture was allowed to separate, and the organic layer was isolated. The aqueous phase was extracted twice with diethyl ether (2 x 120 mL) and the organic extracts were combined and concentrated *in vacuo* to obtain a viscous green oil. Excess 1,6-dibromohexane was removed using vacuum distillation (1 mbar, 115 °C) to obtain a viscous yellow oil. The crude mixture was purified by flash chromatography (100 g column, 0 to 20% CH₂Cl₂ in hexanes over 10 CV) to obtain a white solid containing two spots by TLC. The crude product was recrystallized from MeOH (~250 mL) to afford **3** as a white solid (4.4 g, 44%). ¹H-NMR (600 MHz; CDCl₃): δ 7.53-7.52 (m, 1H), 7.47-7.43 (m, 2H), 3.31-3.28 (t, 2H), 1.94-1.91 (m, 2H), 1.68-1.66 (m, 2H), 1.22-1.19 (m, 2H), 1.10-1.07 (m, 2H), 0.60-0.57 (m, 2H).

2,2'-(9,9-dihexadecylfluorene-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (4) (adapted from reference 2)

A round bottom flask equipped with a stir bar was charged with 2 (5.2 g, 6.7 mmol), B_2Pin_2 (3.76 g, 14.8 mmol), KOAc (1.98 g, 20.2 mmol), and dioxane (28 mL). $Pd(dppf)_2Cl_2$ (165 mg, 202 µmol) was added and then the reaction mixture was stirred at 80 °C for 12 h. The reaction mixture was partitioned with water and extracted thrice with Et₂O. The organic extracts were combined and dry loaded onto silica (9.9

g). The crude product was purified by flash chromatography (100 g column, 0 to 70% CH₂Cl₂ in hexanes over 10 CV) to afford **3** as a white solid (4.88 g, 63%). ¹H-NMR (600 MHz; CDCl₃): δ 7.80 (d, *J* = 7.5 Hz, 1H), 7.74-7.71 (m, 2H), 2.00-1.97 (m, 2H), 1.39 (s, 12H), 1.24-0.99 (m, 26H), 0.87 (t, *J* = 7.0 Hz, 3H), 0.55-0.53 (m, 2H).

Poly(dihexadecylfluorene-alt-bis(bromohexyl)fluorene) (PF-Br)

A Schlenk tube equipped with a stir bar was charged with **3** (447.7 mg, 0.69 mmol), **4** (597 mg, 0.69 mmol), toluene (4.9 mL), and $3M K_3PO_{4(aq)}$ (4.9 mL). The biphasic mixture was degassed by three freezepump-thaw cycles, then, while frozen under liquid nitrogen, $[(o-tol)_3P]_2Pd$ (18 mg, 2.5 µmol) was added under a positive pressure of nitrogen. The Schlenk tube was evacuated and backfilled with nitrogen four times, and the reaction mixture was vigorously stirred at 80 °C for 12 h. The phases were allowed to separate, and the organic layer was isolated and filtered through a single plug of celite and neutral alumina. The plug was thoroughly washed with THF and the flow-through was concentrated *in vacuo*. The crude polymer was precipitated into MeOH (~300 mL) and then filtered to afford **PF-Br** as a yellow solid (478 mg, 63%). ¹H-NMR (700 MHz; CDCl₃): δ 7.85-7.83 (m, 4H), 7.73-7.68 (m, 8H), 3.30 (t, 4H), 2.17-2.11 (m, 4H), 1.72-1.69 (m, 4H), 1.30-1.13 (m, 60H), 0.87 (t, 6H). GPC: M_n = 125.3 kDa, D = 3.34.

Poly(dihexadecylfluorene-*alt*-bis(azidohexyl)fluorene) (PF-N₃)

A round bottom flask equipped with a stir bar and reflux condenser was charged with **PF-Br** (400 mg, 0.36 mmol), NaN₃ (236 mg, 3.6 mmol), ⁿBu₄NBr (234 mg, 0.73 mmol), and THF (60 mL) and the reaction mixture was heated to reflux for 12 h. The reaction mixture was filtered through an alumina plug and washed thoroughly with THF, then the solution was concentrated *in vacuo* and precipitated into MeOH (~200 mL) to afford **PF-N₃** as a yellow solid (328 mg, 86%). ¹H-NMR (700 MHz; CDCl₃): δ 7.86-7.84 (m, 4H), 7.71-7.68 (m, 8H), 3.15 (t, 4H), 2.21-2.08 (m, 4H), 1.45-1.42 (m, 4H), 1.29-1.14 (m, 60H), 0.87 (t, 6H).

mPEG_x-alkyne syntheses adapted from Ref 3.

mPEG₇₅₀-**alkyne.** A glass vial equipped with a stir bar was charged with mPEG₇₅₀-OH (1 g, 1.3 mmol), 4-pentynoic acid (392 mg, 4 mmol), 4-dimethylaminopyridine (37 mg, 300 µmol), and CH₂Cl₂ (2 mL). To the solution *N*-(3-dimethylaminopropyl)-*N*-ethylcarbodiimide hydrochloride (EDC·HCl) (767 mg, 4 mmol) was added, and the reaction mixture was stirred for 12 h at RT. The reaction mixture was purified by flash chromatography (25 g, 5 CV CH₂Cl₂ followed by 0 \rightarrow 7% MeOH in CH₂Cl₂ over 10 CV) and fractions were stained with Dragendorff reagent to identify pure fractions. Pure fractions were combined and solvent was removed *in vacuo* to afford **mPEG**₇₅₀-**alkyne** as a yellow liquid (885 mg, 80%). ¹H-NMR (700 MHz; CDCl₃): δ 4.26 (dd, *J* = 5.3, 4.3 Hz, 2H), 3.71-3.54 (m, 62H), 3.38 (s, 3H), 2.62-2.58 (m, 2H), 2.53-2.51 (m, 2H), 1.99 (t, *J* = 8.3, 2.6 Hz, 1H). ¹³C NMR (176 MHz; CDCl₃): δ 175.4, 171.9, 70.7, 64.0, 59.2, 33.4, 33.0, 14.5. **mPEG**₂₀₀₀-**alkyne**. A glass vial equipped with a stir bar was charged with mPEG₂₀₀₀-OH (1 g, 0.5 mmol), 4-pentynoic acid (147 mg, 1.5 mmol), 4-dimethylaminopyridine (15 mg, 130 µmol), and CH₂Cl₂ (2 mL). Mild sonication was used to fully dissolve the mPEG₂₀₀₀-OH. To the solution EDC·HCl (288 mg, 1.5 mmol) was added, and the reaction mixture was stirred for 12 h at RT. The reaction mixture was precipitated into 1:1 Et₂O:hexanes (~100 mL). The precipitate was collected on a Hirsch funnel, then washed with Et₂O (3 x 20 mL), ice cold EtOH (6 x 50 mL), and Et₂O (3 x 20 mL), followed by drying *in vacuo* to afford **mPEG**₂₀₀₀-**alkyne** as a fine white powder (796 mg, 77%). ¹H-NMR (700 MHz; CDCl₃): δ 4.26 (t, *J* = 4.8 Hz, 2H), 3.76-3.51 (m, 145H), 3.38 (s, 3H), 2.60-2.57 (t, *J* = 7.1 Hz, 2H), 2.52-2.49 (m, 2H), 1.98 (t, *J* = 2.6 Hz, 1H). ¹³C NMR (176 MHz; CDCl₃): δ 171.8, 72.0, 70.6, 69.2, 63.9, 59.1, 33.4, 14.4.

mPEG₅₀₀₀-**alkyne**. A glass vial equipped with a stir bar was charged with mPEG₅₀₀₀-OH (1 g, 0.2 mmol), 4-pentynoic acid (59 mg, 0.6 mmol), 4-dimethylaminopyridine (6 mg, 50 µmol), and CH₂Cl₂ (2 mL). Mild sonication was used to fully dissolve the mPEG₅₀₀₀-OH. To the solution EDC·HCl (115 mg, 0.6 mmol) was added, and the reaction mixture was stirred for 12 h at RT. The reaction mixture was precipitated into 1:1 Et₂O:hexanes (~100 mL). The precipitate was collected on a Hirsch funnel, then washed with Et₂O (3 x 20 mL), ice cold EtOH (6 x 50 mL), and Et₂O (3 x 20 mL), followed by drying *in vacuo* to afford **mPEG**₅₀₀₀-**alkyne** as a fine white powder (852 mg, 84%). ¹H-NMR (700 MHz; CDCl₃): δ 4.27-4.25 (dd, *J* = 5.5, 4.2 Hz, 2H), 3.76-3.51 (m, 418H), 3.38 (s, 3H), 2.60-2.57 (m, 2H), 2.52-2.49 (m, 2H), 1.98 (t, *J* = 2.6 Hz, 1H). ¹³C NMR (176 MHz; CDCl₃): δ 171.8, 70.7, 63.9, 59.1, 33.4, 14.4.

mPEG₂₃₅₀₀-**alkyne**. A glass vial equipped with a stir bar was charged with mPEG₂₃₅₀₀-OH (1 g, 43 μmol), 4-pentynoic acid (13 mg, 128 μmol), 4-dimethylaminopyridine (1.3 mg, 11 μmol), and CH₂Cl₂ (2 mL). Mild sonication was used to fully dissolve the mPEG₂₃₅₀₀-OH. To the solution EDC·HCl (25 mg, 128 μmol) was added, and the reaction mixture was stirred for 12 h at RT. The reaction mixture was precipitated into 1:1 Et₂O:hexanes (~100 mL). The precipitate was collected on a Hirsch funnel, then washed with Et₂O (3 x 20 mL), ice cold EtOH (6 x 50 mL), and Et₂O (3 x 20 mL), followed by drying *in vacuo* to afford **mPEG**₂₃₅₀₀-**alkyne** as a fine white powder (610 mg, 60%). ¹H-NMR (700 MHz; CDCl₃): δ 4.26 (dd, J = 5.5, 4.2 Hz, 2H), 3.76-3.51 (m, 1970H), 3.38 (s, 3H), 2.61-2.57 (m, 2H), 2.52-2.49 (m, 2H), 1.98 (t, J = 2.6 Hz, 1H). ¹³C NMR (176 MHz; CDCl₃): δ 70.7.

mPEG₄₁₀₀₀-**alkyne**. A glass vial equipped with a stir bar was charged with mPEG₄₁₀₀₀-OH (1 g, 24 µmol), 4-pentynoic acid (7 mg, 72 µmol), 4-dimethylaminopyridine (0.7 mg, 6 µmol), and CH₂Cl₂ (2 mL). Mild sonication was used to fully dissolve the mPEG₄₁₀₀₀-OH. To the solution EDC·HCl (14 mg, 72 µmol) was added, and the reaction mixture was stirred for 12 h at RT. The reaction mixture was precipitated into 1:1 Et₂O:hexanes (~100 mL). The precipitate was collected on a Hirsch funnel, then washed with Et₂O (3 x 20 mL), ice cold EtOH (6 x 50 mL), and Et₂O (3 x 20 mL), followed by drying *in vacuo* to afford **mPEG**₄₁₀₀₀-**alkyne** as a fine white powder (664 mg, 67%). ¹H-NMR (700 MHz; CDCl₃): δ 4.26 (dd, *J* = 5.5, 4.2 Hz, 2H), 3.76-3.51 (m, 3660H), 3.38 (s, 3H), 2.61-2.57 (m, 2H), 2.52-2.49 (m, 2H), 1.98 (t, *J* = 2.6 Hz, 1H). ¹³C NMR (176 MHz; CDCl₃): δ 70.7.

Dragendorff reagent (adapted from Ref 4). To an Erlenmeyer flask (250 mL) bismuth oxynitrate (800 mg, 2.6 mmol), glacial acetic acid (1 mL), and distilled water (99 mL) were added. The reagents were gently agitated, and then potassium iodide (2 g, 12.0 mmol) was added. The suspension was mixed

thoroughly and then filtered through a Buchner funnel to remove reddish-orange precipitate. The reddishorange solution was used as isolated and stored under ambient conditions in a thin layer chromatography jar wrapped in aluminum foil.

CuAAC procedure for Cu source screening. A glass vial was charged with **PF-N**₃ (5 mg, 4.9 µmol) and 2.05 equivalents of phenylacetylene (0.9 mg, 0.75 µmol). To the reaction mixture, 1 mg of Cu source [CuCl, CuBr, CuI, or Cu(OAc)] and 10 equivalents of Hunig's base ($^{1}Pr_{2}EtN$) with respect to the Cu source (52 – 100 µmol) were added. In the case of Cu(0) wire, 2 inches of 0.5 mm diameter wire (surface area of ~80 mm²) was wrapped around the stir bar and 9% v/v of Hünig's base (670 µL) was added. The reaction mixtures were stirred at 60 °C, and reaction progress was monitored by IR spectroscopy for the disappearance of the azide stretch at ~2090 cm⁻¹. The % conversion (if the azide stretch remained after 12 h) was estimated by determining the relative peak intensity of the azide stretch (~2090 cm⁻¹) to the C-H stretch (~2870 cm⁻¹) at *t* = 0 h and *t* = 12 h. Using the *Peak Area Tool* from the OMNIC software provided with the IR spectrometer, the C-H and azide stretch of each respective IR spectrum was integrated at *t* = 0 h and *t* = 12 h. The integration values for the N₃ stretches were normalized to the C-H stretches at each respective time point, and % conversion could thus be calculated as per Eq. 1:

% conversion =
$$[1 - \frac{I_{N_3, 12h}}{I_{C-H, 12h}}]x100\%$$

 $\frac{I_{N_3, 0h}}{I_{C-H, 0h}}$ (1)

Where *I* is the integration value for the respective IR stretch at a specific time.

CuAAC procedure for PF-N₃-SWNT and phenylacetylene. A glass vial was charged with 500 μ L of **PF-N₃-SWNT** and 2.05 equivalents of phenylacetylene (0.9 mg, 0.75 μ mol). Equivalents were calculated by determining the polymer concentration in solution (based on the SWNT dispersion protocol),

calculating the mass of polymer present, and then using the molecular weight of the repeat unit to determine the number of moles of azide moiety (two per repeat unit). To the reaction mixture, 1 mg of Cu(OAc) and 10 equivalents of Hunig's base with respect to Cu(OAc) (10.6 mg, 82 μ mol) were added. The reaction mixture was stirred at RT or 60 °C, and reaction progress was monitored by IR spectroscopy for the disappearance of the azide stretch at ~2090 cm⁻¹.

CuAAC procedure for PF-N₃-SWNT and mPEG_x-alkyne. A glass vial was charged with 1.6 mL of **PF-N**₃-SWNT dispersion and 2.05 equivalents of mPEG_x-alkyne (2.4 μ mol). Equivalents were calculated by determining the polymer concentration in solution (based on the SWNT dispersion protocol), calculating the mass of polymer present, and then using the molecular weight of the repeat unit to determine the number of moles of azide moiety (two per repeat unit). To the reaction mixture, 1 mg of Cu(OAc) and 10 equivalents of Hünig's base with respect to Cu(OAc) (10.6 mg, 82 μ mol) were added. The reaction mixture was stirred at RT and reaction progress was monitored by IR spectroscopy for the disappearance of the azide stretch at ~2090 cm⁻¹. Solvent was removed *in vacuo*, then D₂O (3.2 mL) was added and mild sonication was used to re-disperse the solid polymer-SWNT complex into solution. The resulting polymer-SWNT dispersions were characterized by UV-Vis-NIR spectroscopy.

Control reactions between PF-N₃-SWNT and mPEG₅₀₀₀-alkyne. The following recipe was used, where a single ingredient [either Hünig's base, Cu(OAc), or mPEG₅₀₀₀-alkyne] was omitted, per control reaction. A glass vial was charged with 200 μ L of **PF-N₃-SWNT** dispersion and two equivalents of mPEG₅₀₀₀-alkyne (1.5 mg, 0.3 μ mol). Equivalents were calculated by determining the polymer concentration in solution (based on the SWNT dispersion protocol), calculating the mass of polymer present, and then using the molecular weight of the repeat unit to determine the number of moles of azide molety (two per repeat unit). To the reaction mixture, 0.5 mg of Cu(OAc) and 10 equivalents of Hünig's

base with respect to Cu(OAc) (5.3 mg, 41 μ mol) were added. The reaction mixture was stirred at RT for 12 h and reaction progress was monitored by IR spectroscopy for the disappearance of the azide stretch at ~2090 cm⁻¹ (see Figure S2 below).

Preparation of XPS samples. The pre-CuAAC sample was prepared by filtering **PF-N₃-SWNT** dispersion (5 mL) through a Teflon membrane (0.2 μ m pore diameter) and washing with CH₂Cl₂ (15 mL). The post-CuAAC sample was prepared by filtering **PF-N₃-phenylacetylene**-SWNT dispersion (using the same procedure as outlined above with Cu(OAc), on a 5 mL scale) through a Teflon membrane (0.2 μ m pore diameter) and washing with CH₂Cl₂ (15 mL).

Figure S1. FT-IR overlay of the reaction between the **PF-N₃-SWNT** complex and mPEG_x-alkyne (x = 0.75, 2.0, 5.0, 23.5, or 41 kDa) using Hünig's base and Cu(OAc) at RT after stirring for 12 h.

Figure S2. FT-IR overlay of the control reactions between the $\mathbf{PF}-\mathbf{N}_3$ -SWNT complex and mPEG₅₀₀₀-alkyne using Hünig's base and Cu(OAc) at RT after stirring for 12 h.

Table S1. Atomic %s of C, N, O, Cu, and Fe for **PF-N₃-SWNT** Bucky Paper Pre- and Post-CuAAC With Phenylacetylene Using Hünig's Base and Cu(OAc)

Element	Pre-CuAAC (%)	Post-CuAAC (%)
С	95.66	89.87
Ν	0.57	2.85
0	3.71	4.88
Cu	0.00	2.27
Fe	0.06	0.13

Figure S3. ¹H NMR overlay of (a) PF-Br (red) and (b) PF-N₃ (blue).

Figure S4. GPC trace of PF-Br.

Figure S9. ¹H NMR spectrum of mPEG₅₀₀₀-alkyne.

Figure S11. ¹H NMR spectrum of mPEG₂₃₅₀₀-alkyne.

Figure S13. ¹H NMR spectrum of mPEG₄₁₀₀₀-alkyne.

Figure S14. DEPTq spectrum of mPEG₄₁₀₀₀-alkyne in CDCl₃.

References

- (1) Xia, C.; Advincula, R. C. *Macromolecules* **2001**, *34* (17), 5854–5859.
- (2) Fong, D.; Adronov, A. *Macromolecules* **2017**, *50* (20), 8002–8009.
- (3) Opsteen, J. A.; van Hest, J. C. M. Chem. Commun. 2005, No. 1, 57.
- (4) Jia, Z.; Tian, C. Desalination 2009, 247 (1–3), 423–429.