Polymerization based on alternating insertion of isocyanide and alkyne into palladium-carbon bond

Yuki Kataoka, Naoya Kanbayashi,* Taka-aki Okamura and Kiyotaka Onitsuka*

Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.

Supporting Information

1. Synthethis of methyl 4-isocyano-3-((trimethylsilyl)ethynyl)benzoate (1)
2. The investigation of the reaction rate constant for the intramolecular insertion of acetylene
3. Determination of the ratio of successive insertion units on poly-1
4. Characterization of compound 3
5. Spectra and chromatograms
6. Synthethis of methyl 4-isocyano-3-((trimethylsilyl)ethynyl)benzoate (1)

Monomer 1 was synthesized following the scheme S1.

Scheme S1.

Methyl 4-amino-3-iodobenzoate

To a solution of methyl 4-aminobenzoate ($7.57 \mathrm{~g}, 50.1 \mathrm{mmol}$) in $\mathrm{MeOH}(70 \mathrm{~mL})$ was added a solution of $\mathrm{CaCO}_{3}(7.97 \mathrm{~g}, 80 \mathrm{mmol})$ in water $(20 \mathrm{~mL})$ followed by $\mathrm{ICl}(2.90 \mathrm{~mL}, 55.0 \mathrm{mmol})$. After stirring the mixture at room temperature for 16 h , that was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and quenched with water. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and combined the organic layer. The extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified with silica gel column chromatography (hexane $/ \mathrm{Et}_{2} \mathrm{O}=7 / 3$) Yield: $12.57 \mathrm{~g}, 91 \%$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.33(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.81(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.70(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.52\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.

Methyl 4-amino-3-((trimethylsilyl)ethynyl)benzoate

To a stirred solution methyl 4-formamido-3-iodobenzoate ($6.09 \mathrm{~g}, 20.0 \mathrm{mmol}$) in diethylamine $(100 \mathrm{~mL})$ and THF (50 mL) was added trimethylsilylacetylene ($3.06 \mathrm{~g}, 31.1 \mathrm{mmol}$) and CuI (74.8 $\mathrm{mg}, 0.393 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(145 \mathrm{mg}, 0.20 \mathrm{mmol})$ at room temperature. After 28 h , the reaction mixture was died in vacuo to give dark brown solid. The solid was purified with silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Yield: $4.51 \mathrm{~g}, 91 \%$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.79(\mathrm{dd}, J=8.6 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$ H), $7.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.63\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 0.27\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 166.7,152.0,134.8,131.7,119.4,113.3,107.2,100.7,51.9,0.2$.

Methyl 4-formamido-3-((trimethylsilyl)ethynyl)benzoate

A mixture of formic acid $(5.0 \mathrm{~mL})$ and acetic anhydride $(6.3 \mathrm{~mL})$ was heated at $50^{\circ} \mathrm{C}$ for 1 h and then cooled to $0{ }^{\circ} \mathrm{C}$. This was added to a solution of methyl 4-amino-3((trimethylsilyl)ethynyl)benzoate $(4.41 \mathrm{~g}, 17.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 4 h , the reaction mixture was quenched with saturated NaHCO_{3} aq. and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with saturated NaHCO_{3} aq. and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$,
filtered and concentration in vacuo to give highly viscous liquid. Yield: $5.11 \mathrm{~g},>99 \%$ In solution, the product consists of two isomers in a ratio of 7:3 due to restricted rotation of the $\mathrm{C}-\mathrm{N}$ bond. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.95$ ($\mathrm{d}, J=11.0 \mathrm{~Hz}, 0.3 \mathrm{H}, \mathrm{CHO}$), 8.54 ($\mathrm{s}, 0.7 \mathrm{H}, \mathrm{CHO}$), 8.51 (d, $J=8.8 \mathrm{~Hz}, 0.7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.97$ (br, $0.3 \mathrm{H}, \mathrm{NH}$), 8.13 (d, $J=1.7 \mathrm{~Hz}, 0.7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.13$ (br, $0.7 \mathrm{H}, \mathrm{NH}), 7.99(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 1.7 \mathrm{~Hz}, 0.7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.97(\mathrm{~s}, 0.3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.3 \mathrm{H}$, Ar-H), $3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 0.31\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 165.9,165.7,160.6$, $159.0,141.8,134.9,133.8,131.5,126.0,125.6,119.3,114.2,112.6,112.0,104.0,103.6,98.8,52.3$, 0.0.

Methyl 4-isocyano-3-((trimethylsilyl)ethynyl)benzoate (1)

1
To a solution of methyl 4-formamido-3-((trimethylsilyl)ethynyl)benzoate ($1.85 \mathrm{~g}, 6.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added diisopropylamine (3 mL) and phosphoryl chloride $(1.68 \mathrm{~g}, 11.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After 2 h , the reaction mixture was quenched with saturated NaCO_{3} aq. The organic layer was washed twice with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentration in vacuo. The residue was purified with silica gel column chromatography (hexane/EtOAc $=1 / 9$) to give white solid. Yield: $1.87 \mathrm{~g},>99 \%$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.19(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.99(\mathrm{dd}, J=8.3 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$ H), $7.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 0.30\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 170.5,165.1,134.0,130.8,130.1,126.7,104.5,98.6,52.8,-0.2$. FT-IR (KBr tablet, $\left.\mathrm{cm}^{-1}\right): 2171\left(v_{(\mathrm{C}=\mathrm{C})}\right), 2119\left(\mathrm{v}_{(\mathrm{C}=\mathrm{N})}\right), 1731\left(\mathrm{v}_{(\mathrm{C}=\mathrm{O})}\right)$.
2. The investigation of the reaction rate constant for the intramolecular insertion of alkyne

The experiment procedures are written in the main manuscript. The reactions from II to III were monitored by ${ }^{31} \mathrm{P}$ NMR spectroscopy. The rate constant were calculated from the first-order plot of $\ln \left([\right.$ II $\left.] /[\mathbf{I I}]_{0}\right)$ against the reaction time.

IIa to IIIa (Table 1, entry 1)

Fig. S1 The time course of the reaction from IIa to IIIa (Table 1, entry 1): (a) ${ }^{31} \mathrm{P}$ NMR spectra (162 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ and (b) the plot of $\ln \left([\mathrm{IIa}] /[\mathrm{II}]_{0}\right)$ versus time.

IIb to IIIb (Table 1, entry 2)

Only using Ib, the characteristic double-doublet signals were first observed on ${ }^{31} \mathrm{P}$ NMR spectra (Fig. S2). The double-doublet signal is attributed to the cis-form bisphosphine palladium complexes. The double-doublet signal decreased as the reaction progress, and one signal appeared. That suggests that the formation of IIIb would proceed via the cis-form (Scheme S2). The reaction rate was calculated from consumption of IIb.

Fig. S2 The time course of the reaction from IIb to IIIb (Table 1, entry 2): (a) ${ }^{31} \mathrm{P}$ NMR spectra (162 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ and (b) the plot of $\ln \left([\mathbf{I I b}] /[\mathbf{I I b}]_{0}\right)$ versus time.

Scheme S2.

IIc to IIIc (Table 1, entry 3, 4)

Fig. S3 The time course of the reaction from IIc to IIIc (Table 1, entry 3): (a) ${ }^{31} \mathrm{P}$ NMR spectra (162 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ and (b) the plot of $\ln \left([\mathbf{I I c}] /[\text { IIc }]_{0}\right)$ versus time.
(a)
Reactiontime Ilc IIlc
(b)

Fig. S4 The time course of the reaction from IIc to IIIc in the presence of 0.5 equiv of $\mathrm{PPh}_{3}($ Table 1 , entry 4): (a) ${ }^{31} \mathrm{P}$ NMR spectra $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ and (b) the plot of $\ln \left([\right.$ IIc $\left.] /[\mathbf{I I c}]_{0}\right)$ versus time.

3. Determination of the ratio of successive insertion units on poly-1

The ratio of indole structure units in poly-1 was determined by comparing IR spectrum of poly-1 with poly-1' (Fig. S5). The two spectra were normalized by the area intensity of the absorption $v(\mathrm{C}=\mathrm{O})$, and the absorption $v(\mathrm{C} \equiv \mathrm{C})$ were compared. The ratio of the intensity of the absorption $v(\mathrm{C} \equiv \mathrm{C})$ was poly-1/poly-1' $=33 / 100$. Assuming that the intensities of $v(\mathrm{C} \equiv \mathrm{C})$ and $v(\mathrm{C}=\mathrm{O})$ don't depend on the molecular structure, there is 33% of unreacted alkyne moiety in poly-1. That suggests the alternating insertion of isocyanide and alkyne proceeded to form indole structure 67% in the polymer.

Fig. S5 IR spectra of poly-1 and poly-1' in CHCl_{3} normalized with the area intensity of $v(\mathrm{C}=\mathrm{O})$.

4. Characterization of compound 3

To investigate complex 3, the reaction of $\mathbf{I c}$ with 5 equiv of $\mathbf{1}([\mathbf{I c}]=14.7 \mathrm{mM},[\mathbf{1}] /[\mathbf{I} \mathbf{c}]=5$) was performed in CDCl_{3} at $0{ }^{\circ} \mathrm{C}$ (Scheme S 3). Detailed experimental procedures are written in the main text. The reaction mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $0{ }^{\circ} \mathrm{C}$. Signals owing to $\mathbf{1}$ were decreased, and a single complex was observed. In the spectrum, four new characteristic signals of equal intensity were observed for the trimethylsilyl and methyl ester groups, respectively (Fig. S6). Additionally, signals corresponding to the terminal alkene $\left(\mathrm{CH}_{2}=\right)$ protons were observed at 3.80 and 3.53 ppm and amine (NH) proton was observed at 10.64 ppm instead of the methyl proton derived from Ic (These protons were confirmed by HSQC spectrum: Two alkene protons interact the same carbon atom, and the amine proton interacts no carbon atom, Fig. S7). As such, these results suggest that the imine-enamine tautomerization of the imino acyl group originated from the initial insertion of the isocyanide moiety of $\mathbf{1}$ into the methyl group of Ic. In the ESI-MS analysis of the reaction mixture, the signals were observed at $\mathrm{m} / \mathrm{z}=892.1895$ and 1149.2765 , along with their characteristic isotope distribution patterns for $\left[\operatorname{Pd}(\mathbf{1})_{3}(\mathrm{Me})\right]^{+}$and $\left[\operatorname{Pd}(\mathbf{1})_{4}(\mathrm{Me})\right]^{+}$(Fig. S8). The IR absorption of the coordinated isocyanide $v(\mathrm{C} \equiv \mathrm{N})$ was observed at $2184 \mathrm{~cm}^{-1}$, while absorption bands corresponding to the acetylene $v(\mathrm{C} \equiv \mathrm{C})$ and indole $v(\mathrm{C}=\mathrm{N})$ moieties were also observed at 2158 and $1515 \mathrm{~cm}^{-1}$ respectively (Fig. S9). From these results and Yamamoto's work, the structure of $\mathbf{3}$ and its formation mechanism are estimated in Scheme 5. When the reaction was carried out using 4 equiv of $\mathbf{1}$, complicated signals was observed on ${ }^{1} \mathrm{H}$ NMR spectrum. Compound 3 would be formed stably in the presence of excess 1 .

Scheme S3.

Fig. S6 ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture of $\mathbf{I c}$ with 5 equiv of $\mathbf{1}$ in CDCl_{3} at $0{ }^{\circ} \mathrm{C}$

Fig. $\mathbf{S} 7 \mathrm{HSQC}$ spectrum of the reaction mixture of $\mathbf{I c}$ with 5 equiv of $\mathbf{1}$ in CDCl_{3} at $0^{\circ} \mathrm{C}$.

Fig. S8 ESI-MS spectrum of the reaction mixture of $\mathbf{I c}$ with 5 equivof $\mathbf{1}$.

Fig. S9 IR spectrum of the reaction mixture of $\mathbf{I c}$ with 5equivof $\mathbf{1}$ in CHCl_{3}.

5. Spectra and chromatograms

Fig. S10 SEC curve of poly-1 after the purification (Table 2, entry 1).

Fig. S11 SEC curve of the reaction mixture of the polymerization in chloroform (Table 2, entry 2).

Fig. S12 SEC curve of the reaction mixture of the polymerization in toluene (Table 2, entry 3).

Fig. S13 ${ }^{13} \mathrm{C}$ NMR spectra of (a) IIa, (b) poly-1', (c) IIIa, and (d) poly- $\mathbf{1}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$.

Fig. S14 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$.

Fig. S15 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$.

Fig. S16 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{I I}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$.

Fig. S17 ${ }^{13} \mathrm{C}$ NMR spectrum of IIa $\left(\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right)$.

Fig. S18 ${ }^{1} \mathrm{H}$ NMR spectrum of IIIa $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$.

Fig. S19 ${ }^{13} \mathrm{C}$ NMR spectrum of IIIa $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$.

Fig. S20 ${ }^{1} \mathrm{H}$ NMR spectrum of poly- $\mathbf{1}^{\prime}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$.

Fig. S21 ${ }^{13} \mathrm{C}$ NMR spectrum of poly- $\mathbf{1}^{\prime}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$.

Fig. S22 Time course of the ratio of polymer (closed diamond), oligomeric products (open square), monomer $\mathbf{1}$ (cross), and compound $\mathbf{3}$ (circle) component estimated by the ratio of the area intensity of the SEC curves in Fig. 4.

