Supporting Information for Manuscript Entitled with

Preparation of Biorenewable Poly(γ-butyrolactone)-*b*-poly(L-lactide) Diblock Copolyesters *via* One-pot Sequential Metal-free Ring-Opening Polymerization

Yong Shen, ^a Jinbo Zhang, ^b Na Zhao, ^b Fusheng Liu, ^a and Zhibo Li^{*, b}

^{a.} College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

b. Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. E-mail: zbli@qust.edu.cn

Experimental Section

Table S1. Results of ROP of L-LA catalyzed by CTPB a

Materials.

Tetrahydrofuran (THF) and toluene were purified by purging with dry nitrogen, followed by passing through columns of activated alumina. γ -Butyrolactone (γ BL) were obtained from Aladdin Reagent Co. Benzyl alcohol (BnOH) and L-lactide (L-LA) were purchased from TCI Chemical Co. γ BL and BnOH were stirred with CaH₂ for 24 hours, then distilled under reduced pressure and stored over activated 4 Å molecular sieves in a glovebox. The cyclic trimeric phosphazene base (CTPB) was synthesized according to the procedure reported before.¹ All commercially obtained reagents were used as received without further purification unless otherwise noted.

Instruments.

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker DMX-500 FT-NMR spectrometer at 500 MHz for ¹H NMR and 125.7 MHz for ¹³C NMR. Chemical shifts were reported in δ (ppm) and the residual deuterated solvent peak was used as reference. Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analyses were conducted on a Bruker BIFLEX III MS spectrometer equipped with a 337 nm nitrogen laser. The sample was dissolved in THF and mixed with α -cyano-4-hydroxy cinnmaic acid/THF solution prior to dry. Size exclusion chromatography (SEC) spectra were performed on a Agilent HPLC system equipped with a model 1260 Hip degasser, a model 1260 Iso pump and a model 1260 differential refractometer detector. Three Mz-Gel SD_{plus} (10³ Å, 10⁴ Å, and 10⁵Å) columns were connected in series. THF was used as mobile phase at a flow rate of 1.0 mL/min at 40 °C. The molecular weight and polydispersity were calculated using polystyrene standards with narrow molecular weight distribution as references. The sample concentration used for SEC analysis was about 10 mg/mL. Differential scanning calorimetry (DSC) measurements were performed on a TA instrument DSC 25. Temperature was calibrated with an indium standard. Measurements were performed under N₂ atmosphere with a flow rate of 50 mL/min. Each sample with a mass of 5-10 mg was used for the measurement. The typical procedures for the measurements of PyBL-b-PLLA samples were as follows: in the first heating scan, samples were heated from -85 °C to 190 °C at a heating rate of 10 °C/min and kept at 190 °C for 2 min to eliminate any thermal history. In the second heating scan, samples were cooled to -85 °C at 10 °C/min and then equilibrium at -85 °C for 2 min, and subsequently reheated to 190 °C at 10°C/min. The PyBL and PLLA homopolymer samples were measured at similar procedures except that the temperature range was from -85 °C to 100 °C for PyBL and from 0 °C to 200 °C for PLLA, respectively. Thermogravimetric analysis (TGA) measurements were preformed on a TA Q50 thermogravimetric analyzer. The samples were heated from 40 °C to 600 °C at a heating rate of 10 °C/min under N_2 atmosphere with a flow rate of 50 mL/min.

		Time (min)	C(1 + A)(0)	M (kg/mal) (
run	L-LA/C/I	nine (min)	C (L-LA) (%) -	IVI _n (Kg/IIIOI)	PDI*
1	300/1/3	180	71.8	11.2	1.20
2	300/2/3	180	98.0	17.6	1.55
3	450/2/3	10	80.5	11.8	1.35
4	450/2/3	180	91.8	19.3	1.31

^a Reaction conditions: CTPB was used as catalyst, BnOH (0.15mmol) was used as initiator. [L-LA] = 1 M in THF, reaction temperature was 25 °C. ^b Monomer conversions were determined by ¹H NMR spectra. ^c Number-average molecular weight and polydispersity (PDI) were determined by SEC in THF at 40 °C relative to polystyrene standards.

Table S2. Monomer conversion and molecular weight of PyBL-b-PLLA as a function of time. ^a

run	Time (min)	C (γBL) (%) ^ь	C (L-LA) (%) ^b	M _n (kg/mol) ^c	PDI °	
1	5	52.0	97.6	18.0	1.72	
2	10	52.8	97.3	20.5	1.62	
3	30	54.6	96.9	18.7	1.64	
4	120	54.0	97.5	19.1	1.68	
5	180	54.5	97.5	17.9	1.70	

^a Reaction conditions: $[L-LA]/[\gamma BL]/[C]/[I] = 300/300/2/3$, CTPB = 0.1mmol was used as catalyst. The polymerization was conducted at $[\gamma BL] = 6$ M in toluene for 2.5 h followed by addition of L-LA/THF solution (1 M) with temperature at -50 °C. The system temperature was then elevated to 25 °C. ^b Monomer conversions were determined by ¹H NMR spectra. ^c Number-average molecular weight and polydispersity (PDI) were determined by SEC in THF at 40 °C relative to polystyrene standards.

Table S3. Results of sequential ROP of yBL with $\epsilon\text{-CL}$ or $\delta\text{-VL}.^a$									
•	run	M/γBL/C/I	М	Temp♭ (°C)	Time♭ (min)	C (γBL) ^c (%)	C (M) ^c (%)	M _n ^d (kg/mol)	PDI ^d
	1	300/300/1/3	ε-CL	25	10	35.5	17.5	6.5	2.35
	2	300/300/1/3	δ-VL	25	10	28.7	50.8	9.5	1.68

^a Reaction conditions: CTPB was used as catalyst, BnOH (0.15mmol) was used as initiator. The polymerization was conducted at [γ BL] = 6 M in toluene for 2.5 h followed by addition of ϵ -CL/THF or δ -VL/THF solution (1M) with temperature at -50 °C. ^b Temperature and time of the ROP of second monomer. ^c Determined by ¹H NMR spectra. ^d Determined by SEC in THF at 40 °C relative to polystyrene standards.

Table S4.	. TGA results of	PyBL, PL	LA and Py	BL _x -b-PLLA _y .

sample	T _{d, 5%} (°C)	T _{d, max} (°C)
ΡγΒL	240	288, 349
PLLA	337	370
PγBL ₅₀ - <i>b</i> -PLLA ₂₉	284	252, 384
PγBL ₄₄ - <i>b</i> -PLLA ₄₉	331	369
PγBL ₅₀ - <i>b</i> -PLLA ₇₇	330	368
PγBL ₅₃ - <i>b</i> -PLLA ₉₇	326	368

^a $P\gamma BL_{x^{-}b}$ - $PLLA_{y}$, where x = [γBL]/[BnOH] * C (γBL), y = [ι -LA]/[BnOH] * C (ι -LA). Samples were obtained from conditions as followed: $P\gamma BL$, Table 1, run 7; PLLA, Table S1, run 2; $P\gamma BL_{50}$ -b- $PLLA_{29}$, Table 1, run 10; $P\gamma BL_{44}$ -b- $PLLA_{49}$, Table 1, run 11; $P\gamma BL_{50}$ -b- $PLLA_{77}$, Table 1, run 12; $P\gamma BL_{53}$ -b- $PLLA_{97}$, Table 1, run 9.

Table S5. DSC results of PyBL_x-b-PLLA_y. ^a

Sample	First heating scan				Cooling scan			Second heating scan			
	T _{m1} (°C)	ΔH_{m1} (J/g)	T _{m2} (°C)	ΔH_{m2} (J/g)	Т _с (°С)	ΔH_{c} (J/g)	T _g (°C)	T _{m1} (°C)	ΔH_{m1} (J/g)	T _{m2} (°C)	ΔH _{m2} (J/g)
PγBL ₅₀ - <i>b</i> -PLLA ₂₉	43.6	23.1	153.8	6.9	N.A.	N.A.	-26.5	53.7	11.3	152.5	15.4
PγBL ₄₄ - <i>b</i> -PLLA ₄₉	44.1	11.4	164.4	38.1	87.7	26.4	-38.4	56.4	1.0	163.3	37.8
PγBL ₅₀ - <i>b</i> -PLLA ₇₇	45.4	1.5	165.5	48.3	89.1	31.1	-37.9	N.A.	N.A.	165.8	51.6
PγBL ₅₃ - <i>b</i> -PLLA ₉₇	60.2	3.6	166.4	47.5	93.1	34.3	-44.2	N.A.	N.A.	165.8	49.5

^a PγBL_x-*b*-PLLA_y, where x = [γBL]/[BnOH] * C (γBL), y = [L-LA]/[BnOH] * C (L-LA). Samples were obtained from conditions as followed: PγBL₅₀-*b*-PLLA₂₉, Table 1, run 10; PγBL₄₄-*b*-PLLA₄₉, Table 1, run 11; PγBL₅₀-*b*-PLLA₇₇, Table 1, run 12; PγBL₅₃-*b*-PLLA₇₇, Table 1, run 12; PγBL₅₄-*b*-PLLA₇₇, Table 1, run 12; PγBL₅₄-*b*-PLLA₇₇, Table 1, run 12; PγBL₅₄-*b*-PLLA₇₇, Table 1, run 12; PγBL₅₅-*b*-PLLA₇₇, Table 1, run 12; PγBL₅₅-*b*-PLLA₇₇, Table 1, run 12; PγBL₅₅-*b*-PLLA₇₇, run 12; PγBL

Figure S1. MALDI-TOF spectrum of PyBL polymerized at [yBL]/[CTPB]/[BnOH] = 300/1/3 at -50° C for 2.5 h (Table 1, run 1). Distribution A is assigned as cyclic PyBL structure whereas distribution B is assigned as linear PyBL structure terminated with BnO/H. \bigcirc indicate cyclic PyBL+Na⁺, \blacksquare indicate linear BnO-PyBL-H+Na⁺, * indicate cyclic PyBL+K⁺, \checkmark indicate linear BnO-PyBL-H+K⁺.

Figure S2. Stacked ¹H NMR spectra of the reaction mixtures of copolymerization of γ BL with L-LA (top) and PyBL homopolymer (bottom). Deuterated chloroform was used as solvent. (Reaction conditions: [L-LA]/[YBL]/[Cat.]/[I] = 300/300/1/3, CTPB was used as catalyst, BnOH (0.15mmol) was used as initiator. [YBL] = [L-LA] = 1 M in THF were first mixed, then added into the mixture of CTPB and BnOH. The polymerization was conducted under N₂ at -50 °C for 3h. *indicates ethyl acetate. The polymerization conducted at 25 °C gave similar ¹H NMR spectrum).

Figure S3. SEC traces of PyBL (Table 1, run 16) and PyBL-b-PLLA (Table 1, run 17) obtained at [Cat.]/[I] = 3/3.

Figure S4. SEC traces of the aliquots withdrawn from the reaction mixtures at different time intervals (Table S2, run 1 to run 5).

Figure S5. ¹³C NMR spectrum of PyBL-co-PCL (Table S3, run 1). Deuterated chloroform was used as solvent.

Figure S6. ¹³C NMR spectrum of PyBL-co-PVL (Table S3, run 2). Deuterated chloroform was used as solvent.

Figure S7. Representative $^1\!H$ NMR spectrum of PyBL. Deuterated chloroform was used as solvent.

Figure S9. Representative ¹H NMR spectrum of PyBL-b-PLLA. Deuterated chloroform was used as solvent.

Figure S10. Representative ¹³C NMR spectrum of PyBL. Deuterated chloroform was used as solvent.

Figure S11. Representative ¹³C NMR spectrum of PLLA. Deuterated chloroform was used as solvent.

Figure S12. MALDI-TOF spectrum of PyBL-b-PLLA (Table 1, run 15). One possible structure for peak 3666 is BnO-PyBL21-b-PLLA12-H + Na+.

Figure S13. Representative (a) TGA and (b) DTG curves of PyBL_x-b-PLLA_y. The samples used were the same with Table S4.

Figure S14. DSC curves (black lines: first heating scans; red lines: cooling scans; blue lines: second heating scans) of (a) PyBL (Table 1, run 7), (b) PLLA (Table S1, run 2), (c) PyBL₅₀-b-PLLA₂₉ (Table 1, run 10), (d) PyBL₄₄-b-PLLA₄₉ (Table 1, run 11), (e) PyBL₅₀-b-PLLA₇₇ (Table 1, run 12) and (f) PyBL₅₃-b-PLLA₉₇ (Table 1, run 9).

References

1. N. Zhao, C. Ren, H. Li, Y. Li, S. Liu and Z. Li, Angew. Chem. Int. Ed., 2017, 56, 12987-12990.