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II. MATERIALS

All reagents were purchased and used without further purification. Reagent grade solvents were

dried over columns with activated alumina by a MBRAUN SPS 800 system.

III. INSTRUMENTATION

"H-NMR spectra were recorded on a Bruker Avance 300 MHz, Bruker Avance 400 MHz or

Bruker Avance 600 MHz spectrometer.

Gel permeation chromatography (GPC) measurements were carried out on a Shimadzu 10A GPC
system. The column is a PLgel Sum mixed-D type column and the detection system consists of a
differential refractometer and a UV-vis spectrophotometer. The GPC system is calibrated
towards polystyrene standards (purchased from Polymer Laboratories). Before measuring, the

polymers are dissolved in THF (c = 1 mg/mL) and filtered over a pore size of 0.2 pm.
UV-vis spectra were recorded with a Perkin Elmer Lambda 900UV-vis NIR spectrometer.
CD spectra were obtained with a JASCO J-810 spectrometer.

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectra were
recorded using a Waters QToF Premier mass spectrometer equipped with a Nd-YAG laser of 355
nm with a maximum pulse energy of 65uJ delivered to the sample at 50 Hz repeating rate. Time-
of-flight mass analyses were performed in the reflection mode at a resolution of about 10 000.
The matrix, trans-2-(3-(4-tert-butyl-phenyl)-2-methyl-2-propenylidene)malononitrile (DCTB),
was prepared as a 40 mg/mL solution in chloroform. The matrix solution (1 pL) was applied to a

stainless steel target and air-dried. Polymer samples were dissolved in chloroform to obtain 1
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mg/mL solutions. Then, 1 pL aliquots of these solutions were applied onto the target area

(already bearing the matric crystals) and then air-dried.

AFM measurements were carried out in air using a Multimode AFM with a Nanoscope VIII
controller (Veeco/Digital Instruments) in intermittent contact mode. Olympus silicon cantilevers
(OMCL-AC160TS; drive frequency 200-400 kHz) were used. AFM 1images were processed

using WSxM (Nanotec Electronica, Spain).!

Transmission electron microscopy measurements were performed on a 80 kV Zeiss EM-900
using Ted Pella 300 mesh Formvar carbon coated copper grid. Distribution data were calculated
by ImageJ. Oleic acid-coated nanoparticles were dispersed in heptane and deposited onto the

grid, while the hybrid materials were dispersed in THF before deposition.

Thermogravimetric analyses (TGA) were performed on a Q500 V20.13 equipment with a
standard furnace (TAlnstruments, Brussels, Belgium). The weight losses of 10 mg samples in
aluminum pans were monitored as they were heated from room temperature to 823 K at 10

K/min under N> (40 mL/min).

The Faraday setup consists of a broad wavelength laser driven light source, followed by a
monochromator to scan different wavelengths. The light then travels through a polarizer, a PEM,
the sample which is mounted in a DC magnet and an analyzer to finally hit a photomultiplier
tube (PMT). If the analyzer is set to a correct angle, 45° in comparison to the first polarizer, and
the correct detection frequency is used (the double frequency of the operating frequency of the
PEM in our case), the resulted intensities recorded by the PMT can be related to CB in the
sample.” By measuring the CB in the sample for a set of discrete magnetic field strengths and

fitting this to the resulting magnetic induction, one can obtain the Verdet constant.
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Concerning the calculation of the contributions of the magnetite nanoparticle and the

polymer in the hybrid material

For Faraday rotation, the angle of rotation ® is given by: ®=VBL where B is the magnetic field
in the propagation direction, L the path length of the light in the sample and V the Verdet
constant, a material property that quantifies Faraday rotation. The magnetic flux density, B can
be decomposed in the applied magnetic field H and the magnetization of the material, M. As
such we can write: ®=V(H+M)L. The magnetization, M, is caused by a diamagnetic term linear
in magnetic field from organic substances and a superparamagnetic term from the nanoparticles.
The magnetization response of these samples is best described by a Langevin function. For the

fitting of the Faraday rotation, the following equation was used:
O=A+B*((cosh(C*H)/sinh(C*H))-(1/(C*H)))+D*H

Here, A represents an offset factor, B is directly proportional to Faraday rotation, C is a
parameter within the Langevin function which determines the shape of the curve and D
represents the linear diamagnetic response. This way, the contributions of diamagnetic materials

and superparamagnetic materials to the Faraday rotation can be determined.
IV. SYNTHETIC PROCEDURES
The monomers® and initiators* were synthesized according to literature procedures.

a. Synthesis of the initiator

4-bromo-5-methyl-1,2-benzenediol

Br; (16.11 mmol; 2.57 g) is added dropwise to a solution of 4-methyl-1,2-benzenediol (16.11

mmol; 2.00 g) in DCM (100 mL) under Ar. The flask is sealed with a CaCl>-tube and the mixture
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is stirred overnight at room temperature. The mixture is washed with a saturated NaHSOs-
solution and the product extracted with DCM. After removal of the solvent under reduced
pressure, the product was purified via recrystallization in DCM. The pure product was obtained

as white crystals.

Yield = 2.17 g (67 %)

'H NMR (300 MHz, CDCls): 8 = 7.05 (s, 1 H); 6.76 (s, 1 H); 5.11 (s, 2 H); 2.27 (s, 3 H)

1-bromo-4,5-bis[[(1,1-dimethylethyl)dimethvisilyl] oxy]-2-methylbenzene

To a solution of 4-bromo-5-methyl-1,2-benzenediol (10.70 mmol; 2.17 g) and imidazole (32.05
mmol; 2.18 g) in dry THF (40 mL) under Ar, tert-Bbutyldimethylsilyl chloride (32.05 mmol;
4.83 g) in dry THF (40mL) is added. The mixture is stirred overnight at room temperature. The
mixture is subsequently washed with NaOHgq) (0.1 M) and HClg) (0.1 M) and the product
extracted with Et20. The organic layer was washed with a saturated NaHCO3-solution and dried
over MgSO4.The solvent was removed under reduced pressure and the product purified using
column chromatography (SiO2, eluent: heptane/ethyl acetate 85/15). The pure product was

obtained as white crystals.
Yield =3.74 g (81 %)

'H NMR (300 MHz, CDCls): & = 6.97 (s, 1 H); 6.69 (s, 1 H); 2.25 (s, 3 H); 0.97 (s, 18 H); 0.19

(s, 6 H); 0.18 (s, 6 H)

4-bromo-5-methyl-1,2-diacetate-1,2-benzenediol

A solution of 4-bromo-5-methyl-1,2-benzenediol (14.40 mmol; 2.9 g) in acetic anhydride (100

mL), under Ar and shielded from light, is stirred overnight at room temperature. The product is
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extracted with DCM. The solvent was removed under reduced pressure and the product purified

via recrystallization in EtOH. The pure product was obtained as white crystals.
Yield=1.71 g (41 %)
'H NMR (300 MHz, CDCl3): § = 7.38 (s, 1 H); 7.07 (s, 1 H); 2.37 (s, 3 H); 2.28 (s, 6 H)

Ni(PPh3)4

Ni(PPhs)s was synthesized according to literature procedures.’

cat.(PPh;3), and o-tol.(PPh3), precursor initiators

The cat.(PPh3)2 and o-tol.(PPh3s)2 precursor initiators and were synthesized according to
literature procedures by insertion of Ni(PPhs)4 into the corresponding functionalized aryl
bromide in dry toluene under Ar.*> After concentration of the reaction mixture under reduced
pressure, the product is obtained as a yellow solid upon precipitation in pentane and subsequent

filtration over a glass filter.
Yield o-tol.(PPh3)2 = 0.120 g (85 %)

'"H NMR (300 MHz, CDCls): § = 7.52 (m, 12 H); 7.32 (m, 6 H); 7.23 (m, 12 H); 7.09 (d, 1 H);

6.26 (m, 2 H); 5.91 (d, 1 H); 2.10 (s, 3 H)
3P NMR (162 MHz CDCl3, calibrated toward H3PO4 85%): 23.9 ppm
Yield cat.(PPh3)2 = 0.243 g (55 %)

'H NMR (300 MHz, CDCL3): § = 7.57 (s, 12 H); 7.33 (m, 6 H); 7.27 (m, 12 H); 6.84 (s, 1 H);

5.71 (s, 1 H); 2.13 (s, 3 H); 2.07 (s, 3 H); 2.00 (s, 3 H)

3P NMR (162 MHz CDCls, calibrated toward H3PO4 85%): 21.48
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Prior to the polymerization these precursor initiators cat.(PPhs)z and o-tol.(PPh3): undergo a
ligand exchange with eq. of 1,3-bis(diphenylphosphino)propane (dppp) in dry THF to form the

cat. and o-tol. initiators respectively.

b. Synthesis of the monomer

(+)-(S)-2-bromo-5-iodo-3-(3,7-dimethyloctyl))thiophene was prepared according to literature
procedures.* 2-bromo-5-iodo-3-(3,7-dimethyloctyl)thiophene is was bought from TCI and used

without further purification.

c. Polymer synthesis

The polymers were synthesized according to literature procedures.* In a typical polymerization
experiment, THF-solutions of initiator are stirred in several glass tubes for 20 minutes, together
with 2 eq. of dppp. Parallel with this ligand exchange, the precursor monomer undergoes a
Grignard metathesis (GRIM) reaction for 30 minutes in THF, induced by the addition of 1 eq. of
i-propylmagnesium chloride. To initiate the polymerization, different volumes of this monomer
solution are cannulated to the initiator solutions. After 60 minutes, the polymerization is

terminated by adding HCI in THF.

d. Synthesis of the hybrid materials

The functionalization of the magnetite nanoparticles is a two-step one-pot reaction. For removal
of the acetyl groups of the catechol functionality of the polymer, 0.1 mL of a 1 M NH4OH
solution in MeOH is added to a cat.-P3DMOT (35 mg) and Fe3O4-nanoparticle (1.5 mL mg)
solution in THF (50 mg/mL) and stirred for 2h at room temperature. Subsequently, the activate

catechol group of polymer couple to the nanoparticles, replacing the present oleic acid. The
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hybrid material is purified via several series of solvation in THF, precipitation in MeOH and

centrifugation.

V. Characterization of the polymers

a. GPC

o-tol.-P3DMOT

[M]o/[In] = M,, [kg/mol] 1))
20 4.7 1.1
40 9.3 1.1
60 14.6 1.1
80 20.3 1.1
100 20.1 1.2
120 21.5 1.2
140 23.6 1.2
160 21.5 1.2

cat.-P3HT

[M]o/[In] =~ M, [kg/mol] )
20 4.4 1.2
40 8.5 1.1
60 12.2 1.1
80 16.9 1.1
100 15.1 1.1
120 24.7 1.1
140 27.3 1.2

cat.-P3DMOT
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[M]o/[In] = M, [kg/mol]

20 3.0
40 7.0
60 10.2
80 14.2
100 15.0
120 15.5
140 12.9

b. NMR (400 MHz, CDCls)

o-tol.-P3DMOT

1.2
1.1
1.1
1.2
1.2
1.2
1.2

L

Figure S1. "H NMR spectrum of o-tol.-P3DMOT (M, of 4.7 kg/mol).

1 [ppm]
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Figure S2. "H NMR spectrum of o-tol.-P3DMOT (M,, of 9.3 kg/mol).
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Figure S3. '"H NMR spectrum of o-tol.-P3DMOT (M,, of 14.6 kg/mol).
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Figure S4. 'TH NMR spectrum of o-tol.-P3DMOT (M, of 20.3 kg/mol).
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Figure S5. '"H NMR spectrum of o-tol.-P3DMOT (M,, of 20.1 kg/mol).
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Figure S6. 'H NMR spectrum of o-tol.-P3DMOT (M, of 21.5 kg/mol).
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Figure S7. "H NMR spectrum of 0-tol.-P3DMOT (M, of 23.6 kg/mol).
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Figure S8. 'H NMR spectrum of o-tol.-P3DMOT (M, of 21.5 kg/mol).

cat.-P3HT
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Figure S9. '"H NMR spectrum of cat.-P3HT (M, of 4.4 kg/mol).
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Figure S10. '"H NMR spectrum of cat.-P3HT (M, of 8.8 kg/mol).
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Figure S11. "H NMR spectrum of eat.-P3HT (M, of 12.2 kg/mol).
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Figure S12. '"H NMR spectrum of eat.-P3HT (M, of 16.9 kg/mol).
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Figure S13. "H NMR spectrum of eat.-P3HT (M, of 15.1 kg/mol).
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Figure S14. '"H NMR spectrum of cat.-P3HT (M, of 24.7 kg/mol).
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Figure S15. "H NMR spectrum of eat.-P3HT (M, of 27.3 kg/mol).

cat.-P3DMOT
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Figure S16. '"H NMR spectrum of cat.-P3DMOT (M, of 3.0 kg/mol).
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Figure S17. "H NMR spectrum of cat.-P3DMOT (M, of 7.0 kg/mol).
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Figure S18. '"H NMR spectrum of eat.-P3DMOT (M, of 10.2 kg/mol).
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Figure S19. '"H NMR spectrum of cat.-P3DMOT (M, of 14.2 kg/mol).
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Figure S20. '"H NMR spectrum of eat.-P3DMOT (M, of 15.0 kg/mol).
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Figure S21. '"H NMR spectrum of cat.-P3DMOT (M, of 15.5 kg/mol).
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Figure S22. '"H NMR spectrum of cat.-P3DMOT (M, of 12.9 kg/mol).

¢. MALDI-ToF

We note that, while GPC tends to overestimate the M, of rod-like polymer chains, MALDI-ToF
tends to ionize shorter chains more easily. This causes an increasing discrepancy between GPC

and MALDI-ToF results for longer polymer chains.

cat.-P3HT
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Figure S23. MALDI-ToF spectrum of cat.-P3HT (M, of 12.2 kg/mol).
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Figure S24. MALDI-ToF spectrum of cat.-P3DMOT (M, of 3.0 kg/mol).
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Figure S25. MALDI-ToF spectrum of cat.-

3DMOT (purple, M, of 3.0 kg/mol) and predicted

spectra for several possible end groups.
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Figure S26. MALDI-ToF spectrum of cat.-P3DMOT (green, M, of 15.5 kg/mol) and predicted

spectra for several possible end groups.
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Figure S27. MALDI-ToF spectrum of cat.-P3DMOT (M, of 10.2 kg/mol).
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Figure S28. MALDI-ToF spectrum of cat.-P3DMOT (M, of 15.5 kg/mol).
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VI. Characterization of the hybrid material

Figure S29. AFM topography (a) and phase (b) images of cat.-P3DMOT showing respectively

the surface coverage by the polymers (brighter areas on the left image) and individually resolved

fibers.
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Figure S30. AFM topography (a, ¢) and phase (b, d) images of Fe304-cat.-P3DMOT showing

that no fibers can be observed neither on the nanoparticles nor on the rest of the surface.

b. TEM
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Figure S31. TEM measurement of the magnetite nanoparticles coated with oleic acid.

S27



Figure S32. TEM measurement of Fe3Qs-cat.-P3DMOT.

c. TGA
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Figure S33. TGA measurement of Fe3O4-cat.-P3DMOT.
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