Supporting Information

Potassium-sensitive poly(N-isopropylacrylamide)-based hydrogels for sensor applications

Dominic Büning[#], Franka Ennen[#], Sarah Verena Walter[#], Tobias Hennecke, Mathias Ulbricht^{*} Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Universitätsstr. 7, 45141 Essen, Germany

assigned as		Comonomer		B C Am content	тмса	vield
			[mol%]	15 5 [mol%]	[M]	[%]
	M9.9M'0.1DC05	AAm	1.5	-	0.92	97.2
		SPE	0.4	-	0.91	99.0
		SPP	0.4	-	0.91	97.1
	M9.85M'0.15DC05	AAm	2.3	-	0.92	98.1
		SPE	0.6	-	0.91	99.3
		SPP	0.6	-	0.91	98.7
	M9.8M'0.2DC05	AAm	3.0	-	0.93	98.8
		SPE	0.8	-	0.91	98.7
		SPP	0.8	-	0.91	99.3
	M9.75M'0.25DC05	AAm	3.8	-	0.93	97.9
		SPE	1.0	-	0.90	98.6
		SPP	0.9	-	0.90	99.3
	M9.7M'0.3DC05	AAm	4.5	-	0.93	98.2
		SPE	1.2	-	0.90	98.4
		SPP	1.1	-	0.90	99.1
	M9.65M'0.35DC05	AAm	5.3	-	0.93	99.1
	M9.6M'0.4DC05	AAm	6.0	-	0.94	99.1
HG1	M9.6M'0.4DC05CE10	AAm	5.8	3.1	0.97	94.3
	M9.55M'0.45DC05	AAm	6.0	-	0.93	98.9
	M9.5M'0.5DC05	AAm	7.5	-	0.94	96.7
		SPP	1.5	-	0.89	98.9
	M9.45M'0.55DC05	AAm	8.2	-	0.94	98.6
HG2	M9.45M'0.55DC05CE10	AAm	7.9	3.0	0.97	97.2
	M9.4M'0.6DC05	AAm	8.9	-	0.95	99.0
		SPP	23	_	0.88	94.9
HG3	M9 4M'0 6DC05CE10	AAm	8.6	3.0	0.98	97.5
HG4		SPP	2.0	3.0	0.91	97.2
	M9 35M'0 65DC05	ΔΔm	9.6		0.95	98.8
		SPF	2.6	_	0.88	94.9
HG5	M9 35M'0 65DC05CE10	AAm	93	3.0	0.98	98.2
HG6		SPF	2.6	3.3	0.91	95.0
	M9.25M'0.75DC05	SPE	3.1	-	0.88	97.1
		SPP	2.9	-	0.88	99.7
HG7	M9.25M'0.75DC05CE10	SPF	3.0	3,3	0.91	93.7
HG8		SPP	2.8	3 3	0.91	97.9
1100	M9 2M/0 8DC05	AAm	11.7	-	0.96	98.2
HG9	M9.2M'0.8DC05CE10	AAm	11.4	3.0	0.99	96.2
	M9M'1DC05	AAm	14.5	-	0.97	98.6
		SPF	41	_	0.86	98.7
		SPP	4.0	_	0.86	99.2
HG10	M9M'1DC05CE10	AAm	14.1	3.0	1.00	96.8
HG11		SPF	40	3.3	0.89	98.4
HG12		SPP	3.8	3.3	0.89	97.8
HG13	M10DC05		-	-	0.05	97.0
HG14	M10DC05CE10	_	_	3.1	0.95	95.9
11014	MIDDEDSELID			5.1	0.55	55.5
HG15		AAm	14.2	3.0	0.74	99.5
		AAm	13.8	5.8	0.77	98.4
	M7M'0.75DC05CE15	ΔΔΜ	12.2	9.0	0.80	88.6
HG1/			16.7	2.0	1.02	00,0 00 6
HG18	M9M'1.2DC05CE10		16.0	2.9	1.03	0,55 7
HG19	M9M'1DC05CE15	AAm	10.9	4.4	1.01	98,7
HG20	M11.3M1.25DC05CE12.5	AAm	14.3	3.2	1.25	99.4
HG21	M11.3M'1.3DC05CE25	AAM	14.2	6.3	1.29	99.4
HG22	M9M'1DC05	AAM	14.5	-	1.03	100,0
HG23	M9.1M'0.9DC05CE10	SPP	3.6	3.3	0.90	98.5
HG24	M10DC05CE10	-	-	3.1	0.95	98.7

Table SI 1. Overview of parameters of synthesized hydrogels

Figure SI-1. ATR-IR spectra of a) B₁₅C₅Am; b) PNIPAAm hydrogel with 0 mol% BCAm; c) PNIPAAm hydrogel with 3.1 mol% BCAm; d) AAm; e) PNIPAAm hydrogel with 11.8 mol% AAm; f) PNIPAAm hydrogel 11.4 mol% AAm and 3.0 mol% BCAm; g) SPE; h) PNIPAAm hydrogel with 2.6 mol% SPE; i) PNIPAAm hydrogel with 2.6 mol% SPE and 3.3 mol% BCAm; j) SPP; k) PNIPAAm hydrogel with 2.3 mol% SPE; l) PNIPAAm hydrogel with 2.2 mol% SPE and 3.2 mol% BCAm.

Figure SI-2. DSC thermograms of PNIPAAm hydrogels containing different amounts of a) SPE, b) SPP and c) BCAm and AAm.

Figure SI-3. Dependence of phase transition enthalpy from VPTT for different hydrophilic comonomers as a measure for hydrogel performance. With respect to experimental errors AAm, SPP and SPE show similar VPT shift efficiency.

Figure SI-4. SD-T curves of various differently composed HGs.

Figure SI-5. Swelling degrees of BCAm containing HGs in water.

Figure SI-6. Normalized swelling of HGs containing different BCAm contents after equilibration in different sodium nitrate concentrations at 39° C; numbers below the columns indicate the amount of BCAm in the HG in mol%.

Figure SI-7. Normalized swelling plotted against potassium concentration, different samples with different TMC [M] and crown ether content (CE), given in mol%, are compared. A and b measured without sodium nitrate background; c and d are measured at a background of sodium nitrate, total ionic strength I = 130 mM. AAm containing hydrogels were imprinted with BCAm to KNO_3 ratio of 1:1.1 (except TMC 1.00_CE 3.2, this hydrogel was only imprinted with ratio of 1.5:1).

Figure SI-8. Left: Potassium responsivity K_{K^*} of different HGs, influence of TMC and crown ether content on potassium responsivity. Right: Performance coefficient K_{HG} calculated from tangent slope of swelling degree vs. potassium concentration (0 mM – 5 mM) K_{K^*} and tangent slope from VPT curves K_T . Both diagrams include measurements without sodium nitrate background and measurements with overall ionic strength I = 130 mM due to adjustment of sodium nitrate concentration. Hydrogels were imprinted with BCAm to KNO₃ ratio of 1.5:1.

Figure SI-9. Left: Potassium responsivity K_{K^+} of different HGs, influence of TMC and crown ether content on potassium responsivity. Right: Performance coefficient K_{HG} . Both diagrams include measurements without sodium nitrate background and measurements with overall ionic strength I = 130 mM due to adjustment of sodium nitrate concentration. Hydrogels were imprinted with BCAm to KNO₃ ratio of 1:1.1.

Figure SI-10. Normalized deswelling plotted against potassium and/or sodium nitrate concentration, thereby imprinted hydrogels (IMP) are compared with non-imprinted hydrogels (NMP); imprinting ratio of 1.5:1 BCAm to K⁺.

Figure SI-10 a) and **b)** show the results of a *poly*-NIPAAm-*co*-BCAm (TMC 0.95_CE 3.1) hydrogel analyzed at 32°C.

Figure SI-10 c) to **f)** show the effect of imprinting of comonomer containing hydrogels; all hydrogels were analyzed at a temperature of 37°C; **Figure SI-11 c)** and **e)** present data for a hydrogel containing 11.4 mol% AAm (TMC 0.99_CE 3.0); **Figure SI-11 d)** and **f)** present data for a hydrogel containing 3.6 mol% SPP (TMC 0.90_CE 3.3)).

In **Figure SI-10 a**), **c**) and **e**), different salt compositions and concentrations are compared, * highlights hydrogels analyzed in a salt solution containing both KNO₃ and NaNO₃ with a total ionic strength of 130 mM. In **Figure SI-10 b**), **d**) and **f**) the effect of KNO₃ concentration on normalized swelling is demonstrated.