Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2018

**Electronic Supplementary Material** 

## Elastomeric and pH-responsive hydrogels based on direct crosslinking of the poly(glycerol sebacate) pre-polymer and gelatin

Sungkwon Yoon<sup>ab</sup> and Biqiong Chen \*a

<sup>a</sup> School of Mechanical and Aerospace Engineering, Queen's University Belfast, Stranmillis

Road, Belfast, BT9 5AH, United Kingdom

<sup>b</sup> Department of Materials Science and Engineering, University of Sheffield, Mappin Street,

Sheffield, S1 3JD, United Kingdom

\*Corresponding author. Email: <u>b.chen@qub.ac.uk</u>



**Fig. S1** FTIR spectrum of poly(glycerol sebacate) (PGS) pre-polymer before copolymerisation with gelatin. The broad band between  $3604-3164 \text{ cm}^{-1}$  is attributed to the hydroxyl groups (O–H), and the peaks at 2918 and 2851 cm<sup>-1</sup> are for the stretching vibration of alkane groups (–CH<sub>2</sub>).<sup>1,2</sup> Absorption of alkane groups is presented between  $1354-1465 \text{ cm}^{-1}$ .<sup>3</sup> The intense peak at 1733 cm<sup>-1</sup> (C=O) and 1176 cm<sup>-1</sup> (C=O) are the signature band of ester linkages.<sup>2</sup> The absorption peaks at 1693 cm<sup>-1</sup> (dimer C=O), 1303 cm<sup>-1</sup> (C=O stretching), and 929 cm<sup>-1</sup> (O–H bending) are attributed to the carboxylic acid groups.<sup>2</sup>



**Fig. S2** The measured maximum ethanol uptake and weight loss after the sol extraction of poly(glycerol sebacate) and gelatin copolymer (PGSG) specimens.



**Fig. S3** FTIR spectrum of gelatin revealing a set of chemical functional groups such as amine, amide, hydroxyl, and carboxyl groups, derived from its abundant amino acid composition.<sup>4–6</sup> The broad band at 3485 cm<sup>-1</sup> and 3284 cm<sup>-1</sup> are attributed to the hydroxyl groups (O–H) and free amine groups (N–H stretching).<sup>7</sup> The amide peaks in gelatin backbones are identified as follows: amide I peak (C=O stretching) at 1628 cm<sup>-1</sup>, amide II peak at 1522 cm<sup>-1</sup> (N-H bending and C-H stretching), and amide III peak (C-N stretching and N-H in phase bending) at 1235 cm<sup>-1</sup>.<sup>8</sup> The peaks at 2936 cm<sup>-1</sup> and 2878 cm<sup>-1</sup> are due to alkane groups (C–H stretching).<sup>9</sup> The peaks at 1080 cm<sup>-1</sup> (C–O) and 974 cm<sup>-1</sup> (O–H) are attributed to the carboxylic acid groups in gelatin.<sup>4</sup>



**Fig. S4** Photographs of PGSG copolymers before and after swelling in phosphate buffered saline (PBS) for 72 h at 37 °C (from left to right PGSG0, PGSG5, PGSG10, PGSG15, and PGSG20), showing volume expansions.



**Fig. S5** The swelling ratio of PGSGs fit to Ritger-Peppas equation, with the *n* values shown by the slope of the fitting lines.



**Fig. S6** Scanning electron microscopy (SEM) images showing the surface of PGSG specimens after degradation. (A-C) PGSG10 incubated for 28 days at 37 °C in (A) PBS only, (B) lipase + PBS, and (C) collagenase + PBS. (D-F) PGSG20 incubated for 28 days at 37 °C in (D) PBS only, (E) lipase + PBS, and (F) collagenase + PBS.

## Proof-of-concept fabrication of PGSG20 tissue scaffolds

The fabrication was conducted by a combined technique of salt-leaching and freeze-drying. Salt from a local store was sieved doubly to obtain sizes of 300  $\mu$ m and mixed with the molten PGSG20 pre-polymer resin at a weight ratio of 3:1 at 65 °C by mechanical stirring (100 rpm) for 15 min. The mixture was then cast into a PTFE petri dish and placed in a vacuum oven at 120 °C for 24 h to cure the pre-polymer. Next, the cured sample was immersed in 0%, 30%, 70%, and 100% water-ethanol solutions at 40 °C for 3 days, during which the salt particles were washed-out by diffusion to create macro-pores in the scaffold whilst the scaffold became fully swollen. Finally, this swollen scaffold was placed in a freeze dryer (FreeZone Triad Freeze Dry System, Labconco) to remove water and create additional micro-pores in order to improve the pore interconnectivity.<sup>10</sup> The freeze-drying cycle consisted of a pre-freezing stage at -40 °C overnight followed by drying at -10 °C for 24 h.

The mechanical property of PGSG20 scaffolds was determined by a compressive mechanical testing with a Hounsfield H100KS (Tinius Olsen). The disk-shaped specimens were prepared using a mould stencil (n = 6; diameter: 10 mm). A 10 N load cell was used at a compressive rate of 50 mm min<sup>-1</sup>. SEM was also conducted to investigate the microscopic pore structures (Philips XL 30S FEG; spot size = 3, accelerating voltage = 10 kV). The cross-sectional area was examined after a gold-coating.

## REFERENCES

| 1 | M. Frydrych and | B. Chen, | J. Mater. | Chem. B. | 2013, 1, | 6650-6661. |
|---|-----------------|----------|-----------|----------|----------|------------|
|   | 5 5             |          |           | ,        |          |            |

- 2 W. Cai and L. Liu, *Mater. Lett.*, 2008, **62**, 2175–2177.
- H. M. Aydin, K. Salimi, Z. M. O. Rzayev and E. Pişkin, *Biomater. Sci.*, 2013, 1, 503–509.
- 4 J. Ma, H. Cao, Y. Li and Y. Li, J. Biomater. Sci. Polym. Ed., 2002, 13, 67–80.
- 5 P. Aramwit, N. Jaichawa, J. Ratanavaraporn and T. Srichana, *Mater. Express*, 2015, **5**, 241–248.
- 6 R. Hafidz and C. Yaakob, *Int. Food Res. J.*, 2011, **817**, 813–817.
- A. Babu, J. Periasamy, A. Gunasekaran, G. Kumaresan, S. Naicker, P. Gunasekaran and R.
  Murugesan, J. Biomed. Nanotechnol., 2013, 9, 177–192.
- 8 T.-H. Nguyen and B.-T. Lee, J. Biomed. Sci. Eng., 2010, **3**, 1117–1124.
- 9 K. Pal, A. K. Banthia and D. K. Majumdar, *AAPS PharmSciTech*, 2007, **8**, E142–E146.
- 10 S. Sornkamnerd, M. K. Okajima and T. Kaneko, *ACS Omega*, 2017, **2**, 5304–5314.