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Fig. S1 FTIR spectrum of poly(glycerol sebacate) (PGS) pre-polymer before copolymerisation 

with gelatin. The broad band between 3604–3164 cm-1 is attributed to the hydroxyl groups (O–H), 

and the peaks at 2918 and 2851 cm-1 are for the stretching vibration of alkane groups (–CH2).1,2 

Absorption of alkane groups is presented between 1354–1465 cm-1.3 The intense peak at 1733 cm-

1 (C=O) and 1176 cm-1 (C–O) are the signature band of ester linkages.2 The absorption peaks at 

1693 cm-1 (dimer C=O), 1303 cm-1 (C–O stretching), and 929 cm-1 (O–H bending) are attributed 

to the carboxylic acid groups.2 
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Fig. S2 The measured maximum ethanol uptake and weight loss after the sol extraction of 

poly(glycerol sebacate) and gelatin copolymer (PGSG) specimens. 
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Fig. S3 FTIR spectrum of gelatin revealing a set of chemical functional groups such as amine, 

amide, hydroxyl, and carboxyl groups, derived from its abundant amino acid composition.4–6 The 

broad band at 3485 cm-1 and 3284 cm-1 are attributed to the hydroxyl groups (O–H) and free amine 

groups (N–H stretching).7 The amide peaks in gelatin backbones are identified as follows: amide 

I peak (C=O stretching) at 1628 cm-1, amide II peak at 1522 cm-1 (N-H bending and C-H 

stretching), and amide III peak (C-N stretching and N-H in phase bending) at 1235 cm-1.8 The 

peaks at 2936 cm-1 and 2878 cm-1 are due to alkane groups (C–H stretching).9 The peaks at 1080 

cm-1 (C–O) and 974 cm-1 (O–H) are attributed to the carboxylic acid groups in gelatin.4 
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Fig. S4 Photographs of PGSG copolymers before and after swelling in phosphate buffered saline 

(PBS) for 72 h at 37 °C (from left to right PGSG0, PGSG5, PGSG10, PGSG15, and PGSG20), 

showing volume expansions.  
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Fig. S5 The swelling ratio of PGSGs fit to Ritger-Peppas equation, with the n values shown by the 

slope of the fitting lines.  
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Fig. S6 Scanning electron microscopy (SEM) images showing the surface of PGSG specimens 

after degradation. (A-C) PGSG10 incubated for 28 days at 37 °C in (A) PBS only, (B) lipase + 

PBS, and (C) collagenase + PBS. (D-F) PGSG20 incubated for 28 days at 37 °C in (D) PBS only, 

(E) lipase + PBS, and (F) collagenase + PBS. 
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Proof-of-concept fabrication of PGSG20 tissue scaffolds 

The fabrication was conducted by a combined technique of salt-leaching and freeze-drying. Salt 

from a local store was sieved doubly to obtain sizes of 300 µm and mixed with the molten PGSG20 

pre-polymer resin at a weight ratio of 3:1 at 65 °C by mechanical stirring (100 rpm) for 15 min. 

The mixture was then cast into a PTFE petri dish and placed in a vacuum oven at 120 °C for 24 h 

to cure the pre-polymer. Next, the cured sample was immersed in 0%, 30%, 70%, and 100% water-

ethanol solutions at 40 °C for 3 days, during which the salt particles were washed-out by diffusion 

to create macro-pores in the scaffold whilst the scaffold became fully swollen. Finally, this swollen 

scaffold was placed in a freeze dryer (FreeZone Triad Freeze Dry System, Labconco) to remove 

water and create additional micro-pores in order to improve the pore interconnectivity.10 The 

freeze-drying cycle consisted of a pre-freezing stage at -40 °C overnight followed by drying at -

10 °C for 24 h.  

The mechanical property of PGSG20 scaffolds was determined by a compressive 

mechanical testing with a Hounsfield H100KS (Tinius Olsen). The disk-shaped specimens were 

prepared using a mould stencil (n = 6; diameter: 10 mm). A 10 N load cell was used at a 

compressive rate of 50 mm min-1. SEM was also conducted to investigate the microscopic pore 

structures (Philips XL 30S FEG; spot size = 3, accelerating voltage = 10 kV). The cross-sectional 

area was examined after a gold-coating. 

. 
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