SUPPORTING INFORMATION

Polyurethane by Ionic Liquid Crosslink; A New Class of Super Shape-Memory

Like Polymer

Prasanta Kumar Behera, Prantik Mondal, Nikhil K. Singha*

Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India

*Corresponding Author E-mail: <u>nks@rtc.iitkgp.ernet.in</u> Tel.: +91 3222 283178, Fax: +91 3222 255303.

Fig S1: ¹H NMR spectrum of PCL-diol.

Fig S2: GPC traces of (a) PCL-diol ($M_n = 1360$, D = 1.17) (b) Isocyanate terminated prepolymer ($M_n = 2150$, D = 1.39), and (c) PU-BDO ($M_n = 29847$, D = 1.72)

Fig S3: DSC thermograms of PCL-diol. obtained at heating and cooling rate of 10 °C/min.

Scheme S1: Synthesis of non-ionic cross-linked polyurethane (PU-TMP).

Scheme S2: Synthesis of linear polyurethane (PU-BDO).

Sample	V_e (cm ³)	V _r	$C_d \times 10^4 \text{ (mol/cm}^3)$
PU-IL	0.4172	0.2765	2.43
PU-TMP	0.3982	0.2792	2.51

Table S1: Crosslink density of PU-IL and PU-TMP.

*(V_e = equilibrium volume of swollen sample, V_r = volume fraction of the crosslinked polymer in the swollen sample and C_d = rosslink density).

Fig S4: FTIR spectrum of MDI.

Fig S5: DSC heating (a) and cooling (b) thermograms of PU-BDO, PU-IL, and PU-TMP in the temperature range -80 °C to 200 °C (heating and cooling rate = 10 °C/min).

Fig S6: DSC heating thermogram of PU-TMP after fixing to temporary shape ($T_g = -29$ °C, $T_m = 28.8$ °C, $\Delta H_m^a = 2.1$ J/g, $\Delta H_m^b = 3.08$ J/g and $X_c = 2.3\%$).

Fig S7: Plots of tan δ vs. temperature for PU-BDO, PU-IL, and PU-TMP (heating rate 10 K/min).

The stress-strain plot (Figure S7) for all SMPUs was obtained by stretching the samples to 100% elongation at two different temperature (20 °C and 50 °C), and the respective modulus values were reported in Table S2. The trend in the tensile modulus (modulus at 100% elongation) of PU-BDO, PU-TMP, and PU-IL is completely different at 20 °C and 50 °C. At 20 °C the modulus of PU-BDO > PU-IL > PU-TMP, whereas at 50 °C modulus of PU-TMP > BDO > PU-IL. Thus the trend in modulus obtained from DMA analysis is in complete agreement with the tensile analysis.

Fig S8: Typical stress-strain plots of the PU BDO, PU-IL, and PU-TMP at (a) 20 °C and (b) 50 °C.

Table S2: Tensile modulus of PU-BDO, PU-IL and PU-TMP at room temperature and at 50 °C.

Sample	Modulus at 100% strain (MPa)	100% strain (MPa) Modulus at 100% strain (MPa)	
	at room temp.	at 50 °C	modulus (%)
PU-BDO	6.26	2.99	52.23
PU-IL	5.80	2.60	55.17
PU-TMP	4.15	3.50	15.66

Fig S9: Cyclic tensile testing machine attached with thermal chamber.

Table S3: Water absorption by PU-BDO, PU-IL and PU-TMP at 50 °C.

Sample	Water absorption (%)		
	Normal water	Salt water	
PU-BDO	1.2±0.06	1.0±0.03	
PU-IL	2.0 ± 0.09	2.8 ± 0.08	
PU-TMP	$0.9{\pm}0.04$	$0.7{\pm}0.02$	