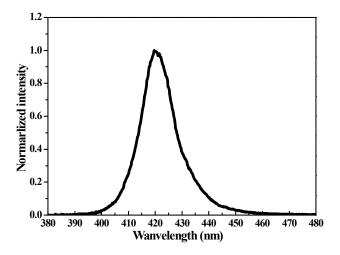
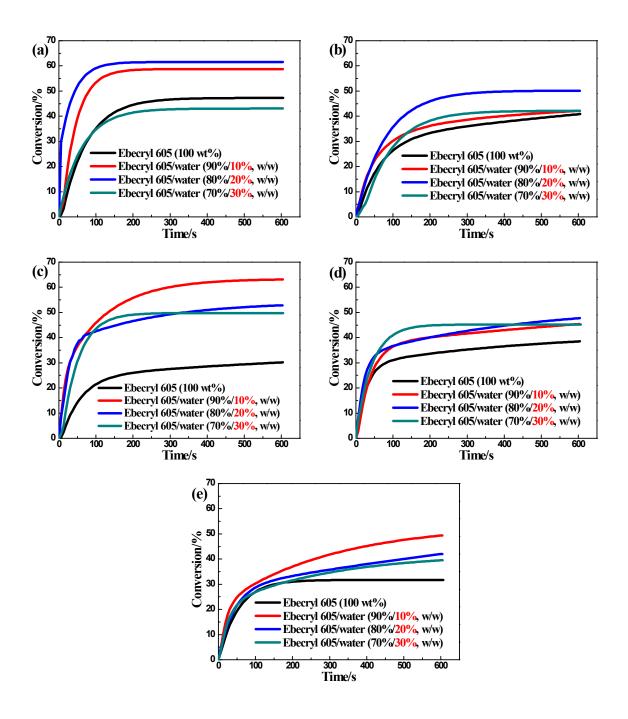
Supporting Information


Novel applications of fluorescent brighteners in aqueous visible-light photopolymerizations: high performance water-based coating and LED-assisted hydrogel synthesis

Xiaoling Zuo ^{1,2,3}, Fabrice Morlet-Savary ^{1,2}, M. Schmitt^{1,2}, Didier Le Nouën ³, Nicolas Blanchard ^{3*}, Jean-Philippe Goddard ^{3*}, Jacques Lalevée ^{1,2*}

¹Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France

²Université de Strasbourg, France


³ Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France

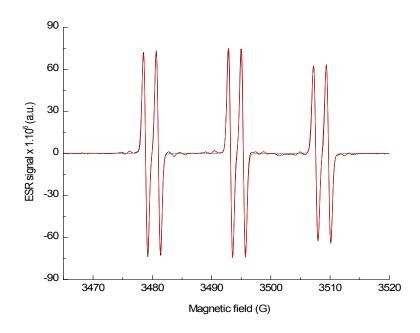

Figure S1 Emission spectrum of the irradiation source LED@420 nm (M420-L3, Thorlabs, $\sim 40 \text{ mW cm}^{-2}$).

Table S1 Photopolymerization data of the Ebecryl 605/water blends with different water concentration obtained under air and exposure to LED@420 nm in the presence of various brighteners-based PISs.

PISs	Ebecryl 605		Ebecryl 605/water (90%/10%, w/w)		Ebecryl 605/water (80%/20%, w/w)		Ebecryl 605/water (70%/30%, w/w)	
	(100 wt%)							
	FC (%)	$PR(R_p/[M_0]^*$ 100)	FC (%)	$PR(R_p/[M_0]^*$ 100)	FC (%)	$PR(R_p/[M_0]^*$ 100)	FC (%)	$PR(R_p/[M_0]^*$ 100)
TFB/IOD	47.3 <u>+</u>	0.74 ± 0.1	58.7 <u>+</u>	1.74 ± 0.2	61.5 ±	4.26 ± 0.05	43.1 <u>+</u>	0.67 ± 0.2
(0.5%/1%, w/w)	1.2%	0.74 <u>-</u> 0.1	1.8%	1.74 <u>-</u> 0.2	2.0%	4.20 <u>-</u> 0.03	2.1%	0.07 <u>1</u> 0.2
C1/IOD	40.9 <u>+</u>	0.54 + 0.2	42.2 <u>+</u>	0.04 + 0.07	50.2 ±	0.60 + 0.1	42.1 <u>+</u>	0.65 + 0.1
(0.1%/1%, w/w)	2.2%	0.54 ± 0.2	2.8%	0.84 ± 0.07	1.7%	0.60 ± 0.1	1.9%	0.65 ± 0.1
CBUS 450/IOD	30.2 <u>+</u>	0.52 + 0.1	$0.1 \frac{63.1 \pm}{2.1\%}$	1.45 ± 0.08	52.9 <u>+</u> 1.5%	1.41 ± 0.2	49.8 <u>+</u> 0.7%	1.24 ± 0.2
(2%/2%, w/w)	1.9%	0.52 ± 0.1						
CBS X/IOD	38.5 <u>+</u>	1 12 + 0.06	45.4 <u>+</u>	1.10 ± 0.15	50.6 ±	1.68 ± 0.2	45.2 <u>+</u>	1 16 + 0 12
(0.1%/1%, w/w)	2.9%	1.13 ± 0.06	2.6%	1.10 ± 0.13	1.9%		1.3%	1.16 ± 0.13
BBT/IOD	37.1 <u>+</u>	0.50 + 0.3	49.4 <u>+</u>	0.04 + 0.1	42.1 <u>+</u>	0.60 + 0.3	39.1 <u>+</u>	0.52 + 0.2
(1%/2%, w/w)	1.8%	0.59 ± 0.3	2.7%	0.84 ± 0.1	2.2%	0.68 ± 0.3	1.5%	0.53 ± 0.3

Figure S2 Photopolymerization profiles (acrylate function conversion *vs.* time) of Ebecryl 605/water blends with different water contents under air in the presence of (a) TFB/IOD (0.5%/1%, w/w) (b) C 1/IOD (0.1%/1%, w/w) (c) CBUS 450/IOD (2%/2%, w/w) (d) CBS X/IOD (0.1%/1%, w/w) (e) BBT/IOD (1%/2%, w/w) PISs upon LED@420 nm exposure.

Figure S3 ESR-ST spectrum of the CBUS 450/IOD system in tert-butylbenzene nitrogen saturated solution after light irradiation at 385 nm. Experimental (-----), simulated (-----).

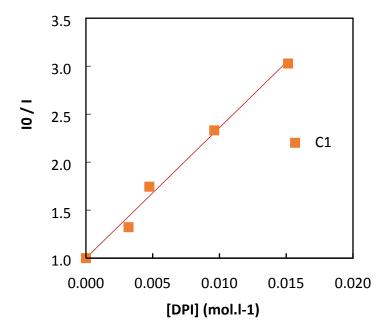
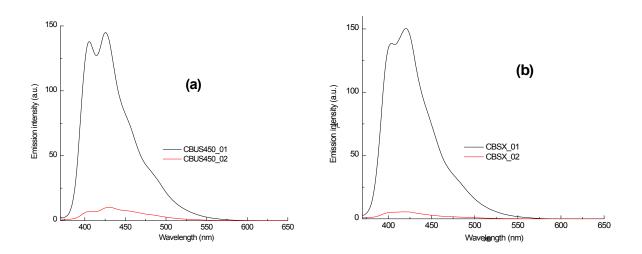
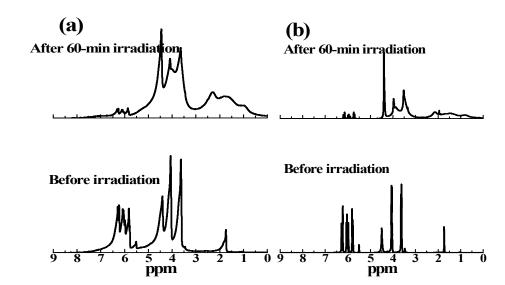
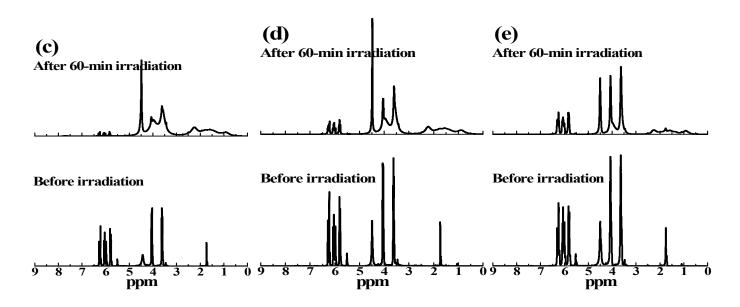



Figure S4 Stern-Volmer plot for the steady state fluorescence quenching.

Figure S5 Steady state fluorescence quenching experiments for a) CBUS450 in absence (----) and in presence (----) of IOD ([IOD] = 1.0 mM), b) CBSX in absence (----) and in presence (----) of IOD ([IOD] = 4.3 mM).


Table S2. Hyperfine coupling constants gathered through ESR-ST experiments. LED irradiation centers at 385 nm.


Compounds	TFB	BBT	C1 a	CBUS 450	CBS X
a _N (G)	14.3	14.3	14.4	14.3	14.3
$a_{H}(G)$	2.1	2.1	2.2	2.1	2.1

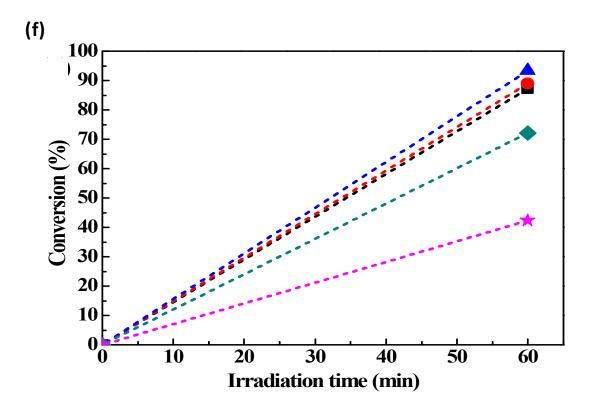

^a Key: confidency upon hfc is \pm 0.1 G.

Table S3 Final conversion of vinylic bond of HEA in the presence of different PISs obtained from photolysis kinetics varies from 0- to 60-min irradiation and 60-min of LED exposure directly.

Conversion	Before irradiation	After 15-min	After 30-min	After 45-min	After 60-min	60-min
		irradiation	irradiation	irradiation	irradiation	irradiation directly
TFB/IOD	-	63.2%	88.7%	94.4%	97.7%	87.2%
C 1/IOD	-	45.7%	82.9%	95.5%	95.5%	88.9%
CBUS 450/IOD	-	68.1%	90.6%	98.5%	99.6%	93.3%
CBS X/IOD	-	56.8%	77.3%	83.7%	85.8%	72.1%
BBT/IOD	-	3.7%	13.1%	29.1%	44.3%	42.2%

Figure S6 ¹H NMR spectra of HEA in a mixed solution (HEA/D₂O/*d*-DMSO blends ([HEA] = 4.4 M; [D₂O] = 25.5 M; [*d*-DMSO] = 1.1 M; the volume ratio of HEA/D₂O = 1:1) after N₂-bubbling before and after 60-min irradiation in the presence of (a) TFB/IOD; (b) C 1/IOD; (c) CBUS 450/IOD; (d) CBS X/IOD PISs; (e) BBT/IOD PISs. (f) Conversion vs. irradiation time. All the tests were carried out at ambient temperature. For all samples, [TFB] = [CBUS 450] = 2.0 mM; [C 1] = 8.0 mM; [CBS X] = 3.3 mM; [BBT] = 4.3 mM; [IOD] = 4.4 mM.

Table S4 Final conversion of vinylic bond of HEA with different volume ratios of HEA/ D_2O mixtures without *d*-DMSO in the presence of CBS X/IOD PIS before and after LED exposure.

The volume ratios of	Before irradiation	After 15-min	After 30-min	After 45-min	After 60-min
HEA/D2O mixtures		irradiation	irradiation	irradiation	irradiation
1/5	-	2.2%	5.9%	7.8%	9.3%
1/2	-	28.1%	37.8%	45.6%	53.3%
1/1	-	53.2%	63.6%	68.8%	69.9%
2/1	-	56.7%	72.4%	78.7%	82.5%
5/1	-	42.5%	53.4%	67.2%	73.5%
11/1	-	40.7%	50.4%	56.4%	64.4%

Figure S7 ¹H NMR spectra of HEA as a function of different ratios of HEA/D₂O mixtures without *d*-DMSO after N₂-bubbling and in the presence of CBS X/IOD PIS before and after LED exposure. The volume ratios of HEA/D₂O range from (a)1/5, (b) 1/2, (c) 1/1, (d) 2/1, (e) 5/1 to (f) 11/1. [CBS X] = 3.6 mM; [IOD] = 4.8 mM.