Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Pure-Color and Dual-Color Emission from BODIPY

Homopolymers Containing the Cardo Boron Structure

Honami Yamane, Kazuo Tanaka* and Yoshiki Chujo*

Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Corresponding author E-mail: kazuo123@chujo.synchem.kyoto-u.ac.jp; chujo@chujo.synchem.kyoto-u.ac.jp

Tel: (+81)-75-383-2604. Fax: (+81)-75-383-2605

Experimental Section

General: ¹H (400 MHz), ¹³C (100 MHz) and ¹¹B (128 MHz) NMR spectra were recorded on a JEOL JNM EX400 spectrometer. ¹¹B NMR spectra were referenced externally to BF₃·OEt₂ (sealed capillary). Analytical thin-layer chromatography (TLC) was performed with silica gel 60 Merck F254 plates. Column chromatography was performed with Wakogel C-300 silica gel. Number-average molecular weight (M_n) and molecular weight distribution (M_w/M_n) values of all polymers were estimated by size exclusion chromatography (SEC) with a TOSOH 8020 series [a dual pump system (DP-8020), a column oven (CO-8020), and a degasser (SD-8020)] equipped with three consecutive polystyrene gel columns [TOSOH TSKgel: G2000H, G3000H and G4000H] and refractive-index (RI-8020) and ultraviolet detectors (UV-8020) at 40 °C. The system was operated at a flow rate of 1.0 mL/min with CHCl₃ as an eluent. Polystyrene standards were employed for calibration. UV–vis spectra were recorded on a Shimadzu UV-3600 spectrophotometer. Fluorescence emission spectra were recorded on a HORIBA JOBIN YVON Fluoromax-4 spectrofluorometer, and the absolute quantum yield was calculated by integrating sphere method on the HORIBA JOBIN YVON Fluoromax-4 spectrofluorometer in chloroform.

Synthesis of B2Br: *n*-BuLi (5.2 mL, 1.63 mol/L in hexane) was added to the solution of 1-bromo-4iodobenzene (2.4 g, 8.5 mmol) in diethyl ether (16 mL) at -78 °C under argon atmosphere. The reaction mixture was stirred for 0.5 h at -78 °C and for 0.5 h at room temperature. Then, the solution of **B0** (0.8 g, 2.1 mmol in 18 mL of diethyl ether) was added to the reaction mixture via cannula at -78 °C. After the reaction mixture was stirred for 0.5 h at -78 °C, methanol was added. The solution was extracted with dichloromethane and washed with water and brine. After the organic phase was dried over MgSO₄, the solvent was removed by a rotary evaporator. The silica gel column chromatography with hexane/dichloromethane (9:1) gave **B2Br** as an orange solid (0.41 g, 0.63 mmol, 30 %). ¹H NMR (CDCl₃): $\delta = 7.31$ (4H, d, J = 8.3 Hz), 7.08 (4H, br), 6.00 (2H, s), 3.03 (2H, d, J = 8.3 Hz), 2.45 (6H, s), 1.70 (6H, s), 1.67–1.59 (2H, m), 1.42–1.39 (2H, m), 1.30–1.27 (10H, m), 0.88 (3H, t, J = 6.8 Hz) ¹³C NMR (CDCl₃): $\delta = 152.7$, 147.7, 138.0, 135.3, 131.9, 130.3, 122.7, 122.6, 120.2, 32.3, 31,9, 30.1, 29.5, 29.3, 28.6, 22.6, 17.1, 16.9, 16.9, 14.1 ppm. ¹¹B NMR (CDCl₃): $\delta = -0.98$ (br) ppm. HRMS (ESI): Calcd. for [M+H]⁺, 647.1802; found, m/z 647.1786.

Synthesis of B2A: Water (8.0 mL) was added to the solution of **B2Br** (0.50 g, 0.77 mmol), 10-phenyl-9anthraceneboronic acid (1.9 g, 3.5 mmol), Pd₂(dba)₃ (14 mg, 15 μmol), S-Phos (56 mg, 0.14 mmol) and cesium carbonate (5.0 g, 15 mmol) in toluene (8.0 mL). The reaction mixture was stirred at 80 °C for 24 h under argon atmosphere. The solution was extracted with toluene and washed with water and brine. After the organic phase was dried over MgSO₄, the solvent was removed by a rotary evaporator. The product was purified by column chromatography with hexane/dichloromethane (4:1). The isolated product was dissolved in a small amount of CH₂Cl₂, and the product was precipitated from methanol to give pure **B2A** as an orange solid (0.49 g, 64%). ¹H NMR (CDCl₃): δ = 7.81 (4H, dd, *J* = 7.2, 3.1 Hz), 7.69–7.48 (18H, m), 7.37 (4H, d, *J* = 7.8 Hz), 7.32–7.31 (8H, m), 6.18 (2H, s), 3.19 (2H, t, *J* = 8.3 Hz), 2.59 (6H, s), 2.15 (6H, s), 1.79–1.77 (2H, m), 1.54–1.51 (2H, m), 1.36–1.28 (10H, m), 0.86 (3H, t, *J* = 6.96 Hz) ppm. ¹³C NMR (CDCl₃): δ = 158.1, 149.2, 147.7, 139.4, 138.4, 137.8, 136.5, 136.0, 133.7, 132.2, 131.4, 130.2, 130.0, 130.0, 128.4, 127.4, 127.3, 126.8, 124.9, 124.6, 122.6, 32.4, 31.8, 30.8, 30.3, 29.6, 29.3, 28.8, 22.6, 17.4, 17.0, 14.0 ppm. ¹¹B NMR (CDCl₃): δ = -0.20 (br) ppm. HRMS (APCI): Calcd. for [M+H]⁺, 995.5470; found, m/z 995.5465.

Synthesis of PB0: BF₃·OEt₂ (0.33 mL, 0.38 g, 2.7 mmol) was added to a solution of **B0** (0.10 g, 0.27 mmol) and PIFA (0.23 g, 0.53 mmol) in CH₂Cl₂ (2.0 mL) at -78 °C, and the solution was stirred at -78 °C for 1 h. The solution was poured into MeOH (25 mL) and triethylamine (3 mL) to collect desired polymer by filtration. The precipitate was dissolved in a small amount of THF, and further reprecipitated from a large excess of EtOH twice to give **PB0** as a metallic red solid (81 mg, 81%). $M_n = 14,000, M_w/M_n = 4.1$. ¹H NMR (CDCl₃): $\delta = 3.68-1.06$ (28H, m), 0.96–0.82 (3H, m) ppm. ¹¹B NMR (CDCl₃): $\delta = 0.59$ (br) ppm.

Synthesis of PB2: BF₃·OEt₂ (0.35 mL, 0.41 g, 2.9 mmol) was added to a solution of B2 (0.14 g, 0.29 mmol) and PIFA (0.25 g, 0.57 mmol) in CH₂Cl₂ (2.1 mL) at -78 °C, and the solution was stirred at -78 °C for 20 h. The solution was poured into MeOH (30 mL) and triethylamine (3 mL) to collect desired polymer by filtration. The precipitate was dissolved in a small amount of THF, and further reprecipitated from a large excess of EtOH twice to give PB2 as a purplish red solid (62 mg, 45%). $M_n = 11,000, M_w/M_n = 2.6.$ ¹H NMR (CDCl₃): $\delta = 7.48-6.92$ (10H, m), 3.35–0.95 (28H, m), 0.93–0.79 (3H, m) ppm. ¹¹B NMR (CDCl₃): $\delta = -1.68$ (br) ppm.

Synthesis of PB2A: BF₃·OEt₂ (0.20 mL, 0.23 g, 1.6 mmol) was added to a solution of B2A (0.16 g, 0.16 mmol) and PIFA (0.14 g, 0.32 mmol) in CH₂Cl₂ (1.2 mL) at -78 °C, and the solution was stirred at -78 °C for 6 h. The solution was poured into MeOH (20 mL) and triethylamine (2 mL) to collect desired polymer by filtration. The precipitate was dissolved in a small amount of THF, and the polymeric products were reprecipitated in a large excess of EtOH. To remove monomer and dimers, this procedure was repeated several times, and then PB2A was collected as a purplish red solid (43 mg, 27%). $M_n = 6,000$, $M_w/M_n = 2.5$. ¹H NMR (CDCl₃): $\delta = 7.97-6.60$ (34H, m), 3.44–0.36 (31H, m) ppm. ¹¹B NMR (CDCl₃): $\delta = -3.13$ (br) ppm.

Calculation of energy transfer efficiency.

The energy transfer efficiency (E_{eff}) was calculated with the equation 1 according to the previous report (*Macromolecules* **2016**, *49*, 8899).

 $E_{\rm eff} = (1 - I_{\rm DA} / I_{\rm D}) = (1 - \Phi_{\rm DA} / \Phi_{\rm D})$ (1)

where I_{DA} is fluorescence intensity of donor (9,10-diphenylanthracene, 813370) in the presence of acceptor (polymer, 193730) and I_D in the absence of acceptor, Φ_{DA} is quantum yield of donor in the

presence of acceptor and Φ_D in the absence of acceptor. In this study, due to low emission intensity, reliable quantum yields were not detectable. Therefore, E_{eff} was calculated from the intensities (76%).

Chart S1. ¹H NMR spectrum of B2Br in CDCl₃.

Chart S2. ¹³C NMR spectrum of B2Br in CDCl₃.

Chart S3. ¹¹B NMR spectrum of B2Br in CDCl₃.

Chart S4. ¹H NMR spectrum of B2A in CDCl₃.

Chart S5. ¹³C NMR spectrum of B2A in CDCl₃.

Chart S6. ¹¹B NMR spectrum of B2A in CDCl₃.

Chart S7. ¹H NMR spectrum of PB0 in CDCl₃.

Chart S8. ¹¹B NMR spectrum of PB0 in CDCl₃.

Chart S9. ¹H NMR spectrum of PB2 in CDCl₃.

Chart S10. ¹¹B NMR spectrum of PB2 in CDCl₃.

Chart S11. ¹H NMR spectrum of PB2A in CDCl₃.

Chart S12. ¹¹B NMR spectrum of PB2A in CDCl₃.

Figure S1. Photoluminescence spectra of the compounds and the polymers with various concentrations in chloroform with the excitation light at 540 nm.

Figure S2. Photoluminescence spectra and luminescent data of (a) **PB0** and (b) **PB2** in the film state with the excitation light at 497 nm. The solution samples were obtained with 10^{-6} M concentration.

Figure S3. ¹H NMR spectra with the solutions containing 9,10-diphenylanthracene and PIFA before and after reactions at -78 °C for 1 h in CDCl₃.

Figure S4. Photoluminescence spectra of PB2A with various concentrations and excitation wavelengths in chloroform.