Supporting Information

SI Figure 1. Time-course evolution of polymer **1** at 100°C arising from the reaction of 2.0 M DVS and 2.0 M TBC in DMSO.

SI Figure 2. Non-specific degradation of polymer 2 is observed at 100°C, which corroborates the shift to lower M_n as a function of time in SI Figure 1. (A) GPC analysis of polymer 2 degradation. (B) ¹H NMR of polymer 2 after heating for 5 d at 100°C.

SI Figure 3. GPC traces of the 85 mmol scale of **1** showing the crude reaction mixture and removal of low-molecular weight cycles and impurities after washing.

SI Figure 4. Time-course evolution of polymer **1** at 25 °C arising from the reaction of 2.0 M DVS and 2.0 M TBC in DMSO.

SI Figure 5. Time-course evolution of polymer 1 at 50°C arising from the reaction of 2.0 M DVS and 2.0 M TBC in DMSO.

SI Figure 6. Polymer arising from the reaction of DVS and TBC at 1.0 M, 0.1 M, and 0.01 M in DMSO at 75°C after 5 days. Only cyclized species are observed at concentrations ≤ 0.1 M.

SI Figure 7. GPC traces of the reaction of allyl amine (1 mmol, neat) added dropwise to a solution of DVS (2.0 M in DMSO) over the course of an hour at -78°C, -42°C, and 0°C. The reactions were warmed to ambient and stirred for 5 days until all vinyl sulfone functionalities were consumed. Only low molecular weight cyclized species are observed.

SI Figure 8. Tailoring polymer length with stoichiometry control. GPC traces of reactions at 2.0 M TBC and excess DVS in DMSO at 75 °C for 5 days. DVS at 3% excess gave 60-mers; 5% excess gave 40-mers; 11% excess gave 20-mers; 25% excess gave 10-mers; and 50% excess gave 5-mers.

SI Figure 9. (A) FTIR spectrum of 1 and (B) FTIR spectrum of 2.

SI Figure 10. ¹H NMR of polymer **1**. Peaks at 3.33, 2.54, and 2.50 ppm are H₂O, DMSO, and DMSO-*d*₅, respectively.

SI Figure 11. ¹H NMR of polymer 2.

SI Figure 13. ¹H NMR of polymer **4**. Quartet at 3.45 and triplet at 1.25 correspond to residual ethanol.

SI Figure 15. ¹H NMR of polymer 6. Singlet at 3.33 ppm corresponds to residual H₂O.

SI Figure 16. ¹H NMR of polymer **6**. Backbone resonances and methyl ester singlet overlap at 3.8 ppm. Singlet at 3.33 ppm corresponds to residual H₂O.

SI Figure 17. ¹H NMR of polymer **8**. Residual ethanol is observed at 4.38, 3.45 (overlaps with backbone resonances), and 1.25 ppm.

SI Figure 18. ¹H NMR of polymer **9**. Residual CH₂Cl₂ is seen at 5.78 ppm, and residual H₂O is seen at 3.33 ppm.

SI Figure 20. ¹H NMR of polymer 11. Residual ethanol is seen at 3.45 and 1.25 ppm.

SI Figure 21. ¹H NMR of polymer **12.** Peaks at 5.78 and 3.33 ppm correspond to residual CH₂Cl₂ and H₂O, respectively.

