Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2018

Electronic Supporting information for

Closer to Polydopamine structure: new insights from a combined ¹³C/¹H/²H solid-state NMR study on deuterated samples.

Monica Cîrcu and Claudiu Filip^{*}

National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania.

Figure S1: comparison between the ¹H ss-NMR spectra of dopamine (black line) and the non-deuterated PDA (red line) acquired 60 kHz sample spinning frequency. The arrows mark the aromatic protons in the dopamine spectrum.

Figure S2: comparison between central lines in the ²H ss-NMR spectra of the ring deuterated dopamine (black line) and the PDA-d1 sample (red line) acquired by the solid-echo pulse sequence at 10 kHz sample spinning frequency. The arrows mark the aromatic deuterons in the dopamine spectrum, whereas the asterisk indicate the NMR line (~ 7.5 ppm) of residual $-ND_3^+$ groups, which remain deuterated also after intensive H₂O washing of the sample.

Figure S3: comparison between the ²H ss-NMR spectra of the PDA-d1 polydopamine sample acquired by the solid-echo pulse sequence at 10 kHz (black line) and 60 kHz sample spinning frequency (red line). The inset is a zoom of the spectral window around the central line, which shows the negligible effect of sample spinning upon the ²H ss-NMR linewidth.