Polymerization-induced self-assembly of liquid crystalline ABC triblock

copolymers with long solvophilic chain

Meng Huo, ^{a,b,1} Zhengyi Wan, ^{a,1} Min Zeng, ^a Yen Wei, ^{*, b} and Jinying Yuan^{*, a}

^a Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, China.

E-Mail: yuanjy@mail.tsinghua.edu.cn

^b Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, China. E-Mail: weiyen@tsinghua.edu.cn

¹ M. Huo and Z. Wan contributed equally.

Fig. S1. a) Ultraviolet–visible spectrum of PDMA₇₂ solution (solvent: THF; concentration: 1.0 mg mL⁻¹). b) Absorbance of gradient solutions of CPADB in THF at 301 nm.

Fig. S2. SEC trace of PDMA₇₂ and D_{72} -B_x (x = 42, 80, 241) copolymers.

Table S1. Molecular an	d size	characteristics	of	diblock	copolymers	D_{72} - B_x .
------------------------	--------	-----------------	----	---------	------------	--------------------

Entry	Molar feed ratio	DP _{BzMA} ^a	Monomer	$M_{\rm n, SEC}$	D^{d}	Diameter	PDI ^e
	(BzMA/PDMA)		conversion ^b	/kDa ^c		/nm ^e	
D_{72} - B_{42}	50	42	83%	10.8	1.22	23.35	0.130
D_{72} - B_{80}	100	80	83%	16.2	1.19	29.94	0.037
D_{72} - B_{241}	250	241	96%	33.6	1.23	56.98	0.056

^a Determined by ¹H NMR spectra;

^b Calculated by ¹H NMR spectra;

^c Characterized by SEC;

^d $D = M_{\rm w}/M_{\rm n};$

^e Hydrodynamic diameter measured by DLS.

Fig. S3. TEM images of a) D_{72} - B_{80} - F_{21} , b) D_{72} - B_{80} - F_{40} , c) D_{72} - B_{80} - F_{61} , and d) D_{72} - B_{80} - F_{92} assemblies unstained.

Fig. S4. DLS characterization of D_{72} - B_{42} and D_{72} - B_{42} - F_y (y = 11, 20, 39, 71, 118) assemblies in ethanol.

Fig. S5. TEM images of a) D_{72} - B_{241} - F_{23} , b) D_{72} - B_{241} - F_{57} and c) D_{72} - B_{241} - F_{78} assemblies unstained.