Supporting Information

Preparation of Multifunctional Hollow Microporous Organic Nanospheres via One-pot Hyper-cross-linking Mediated Selfassembly Strategy

Yang Xu, Tianqi Wang, Zidong He, Minghong Zhou, Wei Yu, Buyin Shi and Kun Huang*

School of Chemistry and Molecular Engineering, East China Normal University, 500 N, Dongchuan Road, Shanghai, 200241, P. R. China

Fig. S1 ¹H NMR characterization of PLA-b-PS intermediate (x=60, y=264).

Fig. S2 XPS N 1s spectra of H-MONs-Ru.

Fig. S3 TEM image for MOP-Ru.

Fig. S4 TEM image for H-MONs-Ru after six runs.

Fig. S5 XPS (A) Cu 2p and (B) N 1s spectra of H-MONs-Cu. The Cu 2p XPS spectrum of H-MONs-Cu showed shakeup satellite peaks at 942-945 eV, which confirmed the presence of Cu(II) species. Two intense peaks at 932.6 eV and 952.4 eV were attributable to $Cu^{2+} 2p^{3/2}$ and $Cu^{2+} 2p^{1/2}$, respectively.¹ In addition, the binding energy of the N 1s peak was shifted toward higher binding energy (at around 400 eV), which can be attributed to a decrease in the electron density of the N atom by the coordination between the N atoms in H-MONs-Cu and immobilized Cu atoms.²

Fig. S6 Iodine vapor adsorption apparatus set-up.

Table S1. Comparison of catalytic efficiency for the CTH of nitrobenzene with various catalysts.

We compared H-MONs-Ru with various catalysts reported in the literature for the CTH of nitrobenzene. Though in different reaction conditions, such as hydrogen-donor reagents, catalyst amount, and reaction conditions, as-prepared H-MONs-Ru catalyst shows good catalytic activity.

Catalyst	H ₂ source	Amount of cat.	Time/yield	Ref.
Ru-BBA-1 ^{a)}	NaBH ₄	0.17 mol%	30 min/100%	3
Rh NPs/SBA-NH ₂ ^{b)}	N_2H_4	10 mg	5 min/100%	4
Ru/CMK-3 ^{c)}	N_2H_4	20.9 mg	60 min/58%	5
Ni-PVAm/SBA-15 ^{d)}	NaBH ₄	0.12 g	20 min/98%	6
AuNPs-sPSB ^{e)}	NaBH ₄	0.1 mol%	60 min/99%	7
Cu(10%)-Meso-PANI ^{f)}	NaBH ₄	50 mg.	3 h/100%	8
Re/OMC ^{g)}	NaBH ₄	0.02 mg	25 s/98%	9
Au/rutile ^{h)}	FA	1 mol%	0.67 h/99%	10
O-MoS ₂ ⁱ⁾	N_2H_4	20 mg	60 min/99%	11
H-MONs-Ru	NaBH ₄	0.025 mol%	45 min/100%	This work

^{a)} Reaction conditions: 0.5 mmol of nitrobenzene, 2.5 mmol of NaBH₄, THF/H₂O (1:3, v/v), RT.

^{b)} Reaction conditions: 1.0 mmol of nitrobenzene, 2.0 mmol of N₂H₄, H₂O (3.0 mL), RT.

^{c)} Reaction conditions: 8.1 mmol of nitrobenzene, 1.0 mL of N₂H₄, H₂O (1.0 mL), 30 °C.

^{d)} Reaction conditions: 2.0 mmol of nitrobenzene, 8.0 mmol of NaBH₄, H₂O (3.0 mL), RT.

^{e)} Reaction conditions: 2.54 mmol of nitrobenzene, 15.24 mmol of NaBH₄, methanol (6.0 mL), 25 °C.

^{f)} Reaction conditions: 1.0 mmol of nitrobenzene, 5.0 mmol of NaBH₄, ethanol/H₂O (1:1, 10 mL), 40 °C.

^{g)} Reaction conditions: nitrobenzene (1.8 mL, 0.1mM), NaBH₄ (0.5 mL, 0.1M), H₂O (3.0 mL), RT.

^{h)} Reaction conditions: 1.0 mmol of nitrobenzene, 3.0 mmol of FA, toluene (5.0 mL), N_2 (1 bar), 60 °C.

ⁱ⁾ Reaction conditions: 0.5 mmol of nitrobenzene, 1.5 mmol of N₂H₄, ethanol (2.0 mL), 50 °C.

Adsorbent	Temperature (°C)	Pressure	Iodine Capacity (mg I ₂ /g)	Ref.
MFM-300(Sc)	80	N ₂ atmosphere	1540	12
SCMPs	75	1 bar	2220	13
NTP	75	1 bar	1800	14
PAF-1	25	40 bar	1860	15
JUC-Z2	25	40 bar	1400	15
ZIF-8	75	1 bar	1200	16
Activated carbon	75	1 bar	300	14
Ag@Zeolite Mordenites	95	1 bar	275	17
Ag@Mon-POF	70	1 bar	250	18
CC3	20	1 bar	364	19
H-MONs-TA	75	1 bar	1300	This work
H-MONs-CZ	75	1 bar	1100	This work

Table S2. Comparison of I_2 Adsorption data in various adsorbents.

Analytical data for compounds of the CTH of nitroarenes.

Aniline. ¹H NMR (500 MHz, CDCl₃): δ 7.19 (t, J = 8.0 Hz, 2H); 6.80 (t, J = 7.5 Hz, 1H); 6.71 (d, J = 7.5 Hz, 2H); 3.66 (s, 2H).

4-Aminoanisole. ¹H NMR (500 MHz, CDCl₃): δ 6.77 (d, J = 8.0 Hz, 2H); 6.58 (d, J = 8.0 Hz, 2H); 3.75 (s, 3H); 3.13 (bs, 2H).

1, 4-Phenylenediamine. ¹H NMR (500 MHz, CDCl₃): δ 6.57 (s, 4H); 3.33 (s, 4H).

4-Chloroaniline. ¹H NMR (500 MHz, CDCl₃): δ 7.10 (d, J = 6.5 Hz, 2H); 6.60 (d, J = 6.5 Hz, 2H); 3.65 (s, 2H).

2-Chloroaniline. ¹H NMR (500 MHz, CDCl₃): δ 7.15 (m, 2H); 6.77 (d, J = 7.5 Hz, 2H); 4.10 (bs, 2H).

Reference

1.S. Xu, J. Du, H. Li and J. Tang, Ind. Eng. Chem. Res., 2017, 56, 15030-15037.

2.T. Toyao, K. Miyahara, M. Fujiwaki, T.-H. Kim, S. Dohshi, Y. Horiuchi and M. Matsuoka, J. Phys. Chem. C, 2015, 119, 8131-8137.

3.J. Mondal, S. K. Kundu, W. K. Hung Ng, R. Singuru, P. Borah, H. Hirao, Y. Zhao and A. Bhaumik, *Chem.-Eur. J.*, 2015, **21**, 19016-19027.

4.S. Ganji, S. S. Enumula, R. K. Marella, K. S. R. Rao and D. R. Burri, *Catal. Sci. Technol.*, 2014, 4, 1813-1819.

5.J. Hu, Y. Ding, H. Zhang, P. Wu and X. Li, RSC Adv., 2016, 6, 3235-3242.

6.R. J. Kalbasi, A. A. Nourbakhsh and F. Babaknezhad, Catal. Commun., 2011, 12, 955-960.

7.A. Noschese, A. Buonerba, P. Canton, S. Milione, C. Capacchione and A. Grassi, J. Catal., 2016, **340**, 30-40.

8.M. Tumma and R. Srivastava, Catal. Commun., 2013, 37, 64-68.

9.P. Veerakumar, P. Thanasekaran, K. C. Lin and S. B. Liu, J. Colloid. Interface. Sci., 2017, 506, 271-282.

10.L. Yu, Q. Zhang, S. S. Li, J. Huang, Y. M. Liu, H. Y. He and Y. Cao, *ChemSusChem.*, 2015, 8, 3029-3035.

11.C. Zhang, Z. Zhang, X. Wang, M. Li, J. Lu, R. Si and F. Wang, *Appl. Catal. A-Gen.*, 2016, **525**, 85-93.

12.X. Zhang, I. da Silva, H. G. W. Godfrey, S. K. Callear, S. A. Sapchenko, Y. Cheng, I. Vitórica-Yrezábal, M. D. Frogley, G. Cinque, C. C. Tang, C. Giacobbe, C. Dejoie, S. Rudić, A. J. Ramirez-Cuesta, M. A. Denecke, S. Yang and M. Schröder, *J. Am. Chem. Soc.*, 2017, **139**, 16289-16296.

13.X. Qian, Z.-Q. Zhu, H.-X. Sun, F. Ren, P. Mu, W. Liang, L. Chen and A. Li, ACS Appl. Mater. Interfaces., 2016, 8, 21063-21069.

14.H. Ma, J.-J. Chen, L. Tan, J.-H. Bu, Y. Zhu, B. Tan and C. Zhang, *ACS Macro Letters*, 2016, 5, 1039-1043.

15.C. Pei, T. Ben, S. Xu and S. Qiu, J. Mater. Chem. A, 2014, 2, 7179-7187.

16.D. F. Sava, T. J. Garino and T. M. Nenoff, Ind. Eng. Chem. Res., 2011, 51, 614-620.

17.Karena W. Chapman, Peter J. Chupas and T. M. Nenoff, J. Am. Chem. Soc., 2010, 132, 8897-8899.

18.A. P. Katsoulidis, J. He and M. G. Kanatzidis, Chem. Mater., 2012, 24, 1937-1943.

19.T. Hasell, M. Schmidtmann and A. I. Cooper, J. Am. Chem. Soc., 2011, 133, 14920-14923.