Supporting information for:

Dynamic Diselenide Containing Polyester from Alcoholysis/Oxidation of γ-Butyroselenolactone

Can Wang,^a Xiaowei An, ^a Minglun Pang,^c Zhengbiao Zhang,^a Xiulin Zhu,^{a,d} Jian Zhu,* ^a Filip E. Du Prez,* ^b and Xiangqiang Pan* ^a

^aSuzhou key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

^bPolymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, B-9000 Ghent, Belgium.

^cDepartment of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, P.R. China ^dGlobal Institute of Software Technology, No 5. Qingshan Road, Suzhou National Hi-Tech District, Suzhou 215163, China.

* Corresponding authors: chemzhujian@suda.edu.cn, <u>panxq@suda.edu.cn</u>, Filip.DuPrez@UGent.be.

diethyl γ, γ'-diselenodibutyrate (1): Yellow liquid, yield >99%. ¹H NMR (300 MHz, CDCl₃) δ 4.15 (q, *J* = 7.1 Hz, 4H), 2.93 (t, *J* = 7.2 Hz, 4H), 2.43 (t, *J* = 7.3 Hz, 4H), 2.14-2.00 (m, 4H), 1.26 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 173.53, 61.09, 34.39, 29.44, 26.69, 14.91. ⁷⁷Se NMR (114 MHz, CDCl₃) δ 302.81. HR-ESI-MS: *calculated m/z* $C_{12}H_{22}NaO_4Se_2$ [M+Na⁺]: 412.9746; *experimental m/z* [M+Na⁺]: 412.9807.

dimethyl γ, γ'-diselenodibutyrate (2): Yellow liquid, yield >99%; ¹H NMR (300 MHz, CDCl₃) δ 3.68 (s, 6H), 2.93 (t, J = 7.2Hz, 4H), 2.45 (t, J = 7.3 Hz, 4H), 2.13-2.01 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 173.95, 52.29, 34.08, 29.35, 26.61. ⁷⁷Se NMR (114 MHz, CDCl₃) δ 302.09. HR-ESI-MS: *calculated m/z* C₁₀H₁₈NaO₄Se₂[M+Na⁺]: 384.9433; *experimental m/z* [M+Na⁺]: 384.9515.

dipropyl γ, γ'-diselenodibutyrate (3): Yellow liquid, yield 99%; ¹H NMR (300 MHz, CDCl₃) δ 4.04 (t, *J* = 6.7 Hz, 4H), 2.94 (t, *J* = 7.2 Hz, 4H), 2.44 (t, *J* = 7.3 Hz, 4H), 2.13-2.00 (m, 4H), 1.72-1.58 (m, 4H), 0.94 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 173.60, 66.73, 34.37, 29.44, 26.71, 22.64, 11.06. ⁷⁷Se NMR (114 MHz, CDCl₃) δ 302.58. HR-ESI-MS: calculated m/z C₁₄H₂₆NaO₄Se₂ [M+Na⁺]: 441.0059; experimental m/z [M+Na⁺]: 441.0039.

dibutyl γ, γ'-diselenodibutyrate (4): Yellow liquid, yield 91%; ¹H NMR (300 MHz, CDCl₃) δ 4.08 (t, J = 6.7 Hz, 4H), 2.93 (t, J = 7.2 Hz, 4H), 2.43 (t, J = 7.3 Hz, 4H), 2.13-2.00 (m, 4H), 1.67-1.54 (m, 4H), 1.45-1.30 (m, 4H), 0.93 (t, J = 7.3 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 173.61, 65.03, 43.39, 31.33, 29.44, 26.71, 19.81, 14.37. ⁷⁷Se NMR (114 MHz, CDCl₃) δ 302.60. HR-ESI-MS: *calculated m/z* C₁₆H₃₀NaO₄Se₂ [M+Na⁺]: 469.0372; *experimental m/z* [M+Na⁺]: 469.0364.

dihexyl γ, γ'-diselenodibutyrate (5): Yellow liquid, yield 90%, ¹H NMR (300 MHz, CDCl₃) δ 4.07 (t, *J* = 6.7 Hz, 4H), 2.93 (t, *J* = 7.2 Hz, 4H), 2.43 (t, *J* = 7.3 Hz, 4H), 2.13-1.99 (m, 4H), 1.68-1.54 (m, 4H), 1.41-1.23 (m, 12H), 0.89 (t, *J* = 6.8 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 173.64, 65.36, 34.41, 32.11, 29.46, 29.27, 26.73, 26.28, 23.22, 14.68. ⁷⁷Se NMR (114 MHz, CDCl₃) δ 302.49. HR-ESI-MS: *calculated m/z* C₂₀H₃₈NaO₄Se₂[M+Na⁺]: 525.0998; *experimental m/z* [M+Na⁺]: 525.0866.

di(2-methylallyl) γ, γ'-diselenodibutyrate (6): Yellow liquid, yield 91%; ¹H NMR (300 MHz, CDCl₃) δ 4.97 (d, J = 12.8 Hz, 4H), 4.51 (s, 4H), 2.94 (t, J = 7.2 Hz, 4H), 2.49 (t, J = 7.3 Hz, 4H), 2.16-2.02 (m, 4H), 1.76 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 173.18, 140.55, 113.64, 68.70, 34.29, 29.35, 26.66, 20.20. ⁷⁷Se NMR (144 MHz, CDCl₃) δ 302.09. HR-ESI-MS: *calculated m/z* C₁₆H₂₆NaO₄Se₂[M+Na⁺]: 465.0059; *experimental m/z* [M+Na⁺]: 464.9926.

diisopropyl γ, γ'-diselenodibutyrate (7): Yellow liquid, yield 24%; ¹H NMR (300 MHz, CDCl₃) δ 5.08-4.92 (m, 2H), 2.93 (t, *J* = 7.3 Hz, 4H), 2.39 (t, *J* = 7.3 Hz, 4H), 2.12-1.99 (m, 4H), δ 1.22 (d, *J* = 6.3 Hz, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 173.03, 68.37, 34.74, 29.48, 26.77, 22.52. ⁷⁷Se NMR (114MHz, CDCl₃) δ 303.68. HR-ESI-MS: *calculated* $m/z C_{14}H_{26}NaO_4Se_2 [M+Na^+]$: 441.0059; *experimental* m/z [M+Na⁺]: 441.0116.

di(prop-2-yn-1-yl) γ, γ'-diselenodibutyrate (8): Yellow liquid, yield 83%; ¹H NMR (300 MHz, CDCl₃) 4.68 (d, J = 2.5 Hz, 4H), 2.93 (t, J = 7.2 Hz, 4H), 2.50 (m, 6H), 2.16-2.01 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 172.67, 78.29, 75.59, 52.62, 33.99, 29.15, 26.48. ⁷⁷Se NMR (114 MHz, CDCl₃) δ 302.45. HR-ESI-MS: *calculated m/z* C₁₄H₁₈NaO₄Se₂[M+Na⁺]: 432.9433; *experimental m/z* [M+Na⁺]: 432.9455.

dibenzyl γ, γ'-diselenodibutyrate (9): Yellow liquid, yield 98%; ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.30 (m, J = 9.08 Hz, 10H), 5.12 (s, 4H), 2.91 (t, J = 7.2 Hz, 4H), 2.48 (t, J = 7.3 Hz, 4H), 2.15-2.01 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 173.34, 136.57, 129.24, 128.90, 127.64, 66.98, 34.33, 29.33, 26.63. ⁷⁷Se NMR (114 MHz, CDCl₃) δ 320.55. HR-ESI-MS: *calculated m/z* C₂₂H₂₆NaO₄Se₂[M+Na⁺]: 537.0059; *experimental m/z* [M+Na⁺]: 537.0039.

dicyclohexylγ, γ'-diselenodibutyrate (10): Yellow liquid, yield 15%; ¹H NMR (300 MHz, CDCl₃) δ 4.80-4.69 (m, J = 8.9 Hz, 2H), 2.93 (t, J = 7.3 Hz, 4H), 2.41 (t, J = 7.3 Hz, 4H), 2.13-1.99 (m, 4H), 1.90-1.15 (m, 20H). ¹³C NMR (75 MHz, CDCl₃) δ 172.98, 73.36, 34.82, 32.32, 29.52, 26.86, 26.04, 24.42. ⁷⁷Se NMR (114 MHz, CDCl₃) δ 303.60. HR-ESI-MS: *calculated m/z* C₂₀H₃₄NaO₄Se₂[M+Na⁺]: 521.0685; *experimental m/z* [M+Na⁺]: 521.0708.

Figure S1. $^1\text{H},\,^{13}\text{C},\,\text{and}\,^{77}\text{Se}$ NMR spectra of diethyl $\gamma,\,\gamma'\text{-diselenodibutyrate}.$

Figure S2. ¹H, ¹³C, and ⁷⁷Se NMR spectra of dimethyl γ , γ' -diselenodibutyrate.

Figure S3. ¹H, ¹³C, and ⁷⁷Se NMR spectra of dipropyl γ , γ '-diselenodibutyrate.

Figure S4. ¹H, ¹³C, and ⁷⁷Se NMR spectra of dibutyl γ , γ '-diselenodibutyrate.

Figure S5. ¹H, ¹³C, and ⁷⁷Se NMR spectra of dihexyl γ , γ '-diselenodibutyrate.

Figure S6. ¹H, ¹³C, and ⁷⁷Se NMR spectra of di(2-methylallyl) γ , γ '-diselenodibutyrate.

Figure S7. ¹H, ¹³C, and ⁷⁷Se NMR spectra of diisopropyl γ , γ '-diselenodibutyrate.

Figure S8. ¹H, ¹³C, and ⁷⁷Se NMR spectra of di(prop-2-yn-1-yl) γ , γ '-diselenodibutyrate.

Figure S9. $^1\text{H},\,^{13}\text{C},\,\text{and}\,^{77}\text{Se}$ NMR spectra of dibenzyl $\gamma,\,\gamma'\text{-diselenodibutyrate}.$

Figure S10. $^1\text{H},\,^{13}\text{C},\,\text{and}\,^{77}\text{Se}$ NMR spectra of dicyclohexyl $\gamma,\,\gamma'\text{-diselenodibutyrate}.$

Diselenide Containing Polyester:

Figure S11. ¹H NMR spectra of the reaction solution of γ -butyroselenolactone with ethylene glycol.

Figure S12. SEC curves of polymers from the reaction of ethylene glycol and γ -butyroselenolactone in THF (EGSe₂) (1 \times 10⁻³ mol L⁻¹).

Figure S13 ^{13}C NMR spectra of $\gamma\text{-butyroselenolactone, diethyl}$ $\gamma,$ $\gamma^{\prime}\text{-diselenodibutyrate and polyester}$ (EGSe_2).

Figure S14. ¹H, ¹³C, and ⁷⁷Se NMR spectra of EGSe₂.

Figure S15. ¹H, ¹³C, and ⁷⁷Se NMR spectra of BDOSe₂.

Figure S17. IR spectra of EGSe₂, BDOSe₂, HDOSe₂.

Figure S18. ¹H, ¹³C, and ⁷⁷Se NMR spectra of PEGSe₂1.

Figure S19. ¹H, ¹³C, and ⁷⁷Se NMR spectra of PEGSe₂2.

Figure S20. ¹H, ¹³C, and ⁷⁷Se NMR spectra of PEGSe₂3.

Figure S21. FTIR spectra of PEGSe₂1, PEGSe₂2, PEGSe₂3.

Figure S22. HRMS spectra of polyesters from the reaction of ethylene glycol and γ -butyroselenolactone with a ratio of [Se]₀: [EG]₀ = 2:0.9/2:1/2:1.1 in THF.

Entry	Structure	Calculated m/z	Calculated	Experimental
		(+H)	m/z (+Na)	m/z
1	Se O	210.9873	233.9771	210.9855
2	Se $Chemical Formula: C10H16O4Se2Exact Mass: 359.9379$	360.9457	382.9277	360.9435
3	Se O O O Se Se O CH_2 Chemical Formula: $C_{16}H_{26}O_6Se_3$ Exact Mass: 551.9233	552.9311	574.9131	553.0654
4	Se S	720.8836	740.8664	740.8715
5	$H_{2}C \xrightarrow{0} 0 $	916.9902	938.9720	917.0435

 Table S1. Mass Measurement of Different Chain Populations of Oligomers Detected by LC-MS.

Figure S23. FTIR spectrum for the polyesters obtaining form reaction of γ -butyroselenolactone and glycerol in THF.

Figure S24. TGA spectrum for the polyesters obtaining form reaction of γ -butyroselenolactone and glycerol in THF.

Figure S25. Rheological testing of polyester materials (PGOSe₂).

Figure S26. DSC curves of polyesters (PGOSe₂).