Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting information for

Functional cationic derivatives of starch as antimicrobial agents

Shrinivas Venkataraman¹, Ashlynn L. Z. Lee¹, Jeremy P. K. Tan¹, Yi Chien Ng¹, Amelia Lee Yi Lin¹, Jaron Y. K. Yong¹, Guangshun Yi¹, Yugen Zhang¹, Ivor J. Lim^{2,3}, Thang T. Phan^{2,3} and Yi Yan Yang¹*

Corresponding Author

* Tel.: 65-6824-7106. Fax: 65-6478-9084.E-mail: yyyang@ibn.a-star.edu.sg

¹ Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore

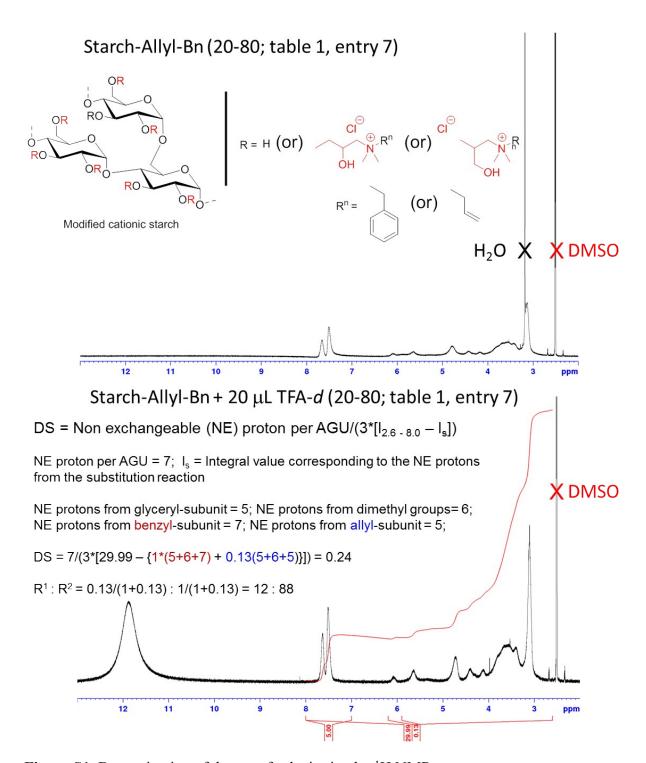
² Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore

³ CellResearch Corporation Pte Ltd, 10 Medical Dr, Singapore 117597, Singapore

Notes on determination of degree of substitution (DS) by ¹H NMR

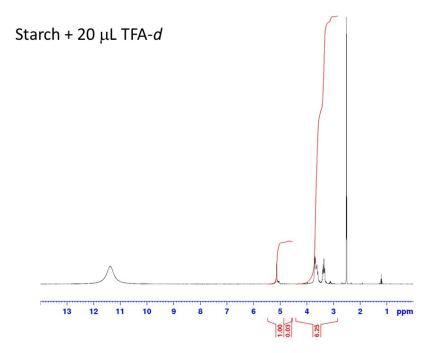
DS was calculated by using the following formula:

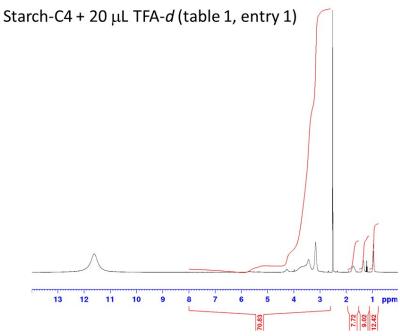
DS = Non exchangeable (NE) proton per anhydroglucose units $(AGU)/(3*[I_{2.6-8.0}-I_s])$

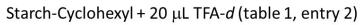

NE proton per AGU = 7; 3 is used to account for the possibility that there are 3 reactive sites per AGU. In our calculation, contribution from degree of branching – i.e., the change in the possible reactive sites from 3 to 2 at the branching site, has been ignored; $I_{2.6}$ _{- 8.0} = Integral value corresponding to all the protons within 2.6 – 8.0 ppm range; I_s = Integral value corresponding to the NE protons from the substitution reaction within 2.6 – 8.0 ppm range.

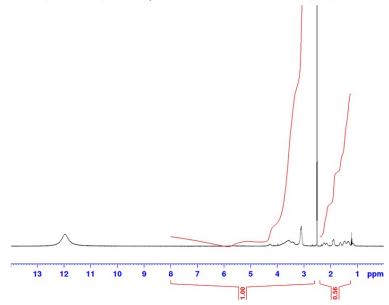
Example calculation using a representative example - *Starch-Allyl-Bn*(20-80):

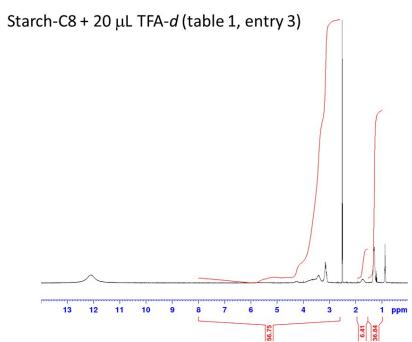
$$DS = 7/(3*[29.99 - 1*(5+6+7) + 0.13(5+6+5)]) = 0.24$$

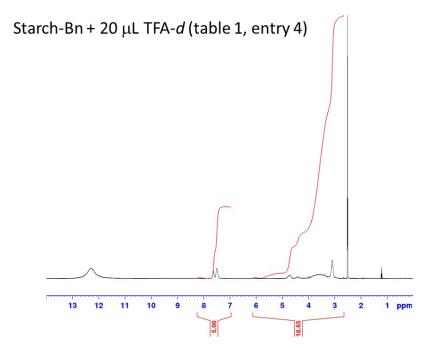

The phenyl region $I_{7.0-8.0} = 5.0$, corresponding to 5H of benzene ring within 7.0 - 8.0 ppm range, was used to normalize the *N*,*N*-dimethylbenzylamine substitution reaction and $I_{5.95-6.20} = 0.13$, corresponds to 1H proton from the allylic-alkene proton within 5.95-6.20 ppm range, was used to estimate the *N*,*N*-dimethylallylamine substitution reaction (NE protons from glyceryl-subunit = 5; NE protons from dimethyl groups= 6; NE protons from benzyl-subunit = 7; NE protons from allyl-subunit = 5).

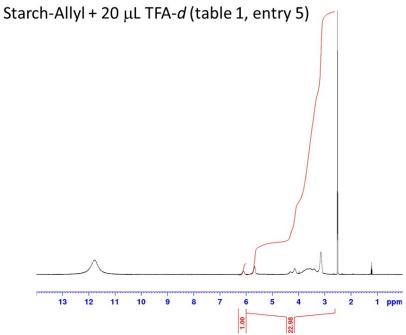

Ratio of substitution of two different amines were calculated as follows by using the integration values per 1H obtained from $I_{7.0-8.0}$ and $I_{5.95-6.20}$: R^1 : $R^2 = 0.13/(1+0.13)$: 1/(1+0.13) = 12: 88

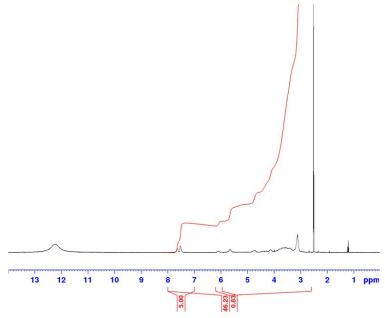


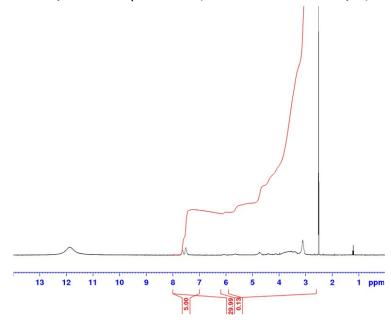

Figure S1. Determination of degree of substitution by ¹H NMR.

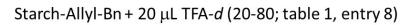

Compilation of ¹H NMR spectra of starch derivatives

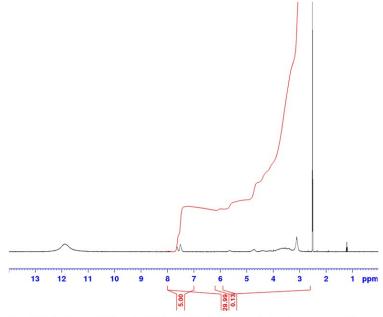


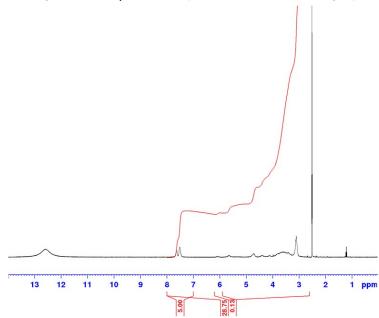


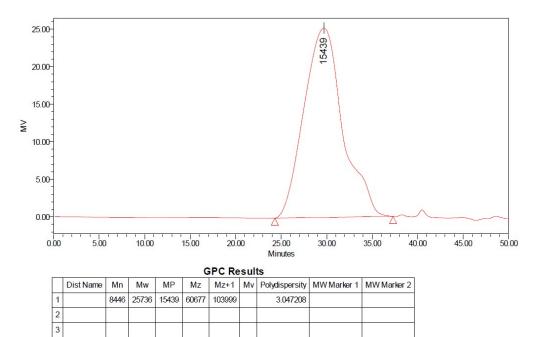




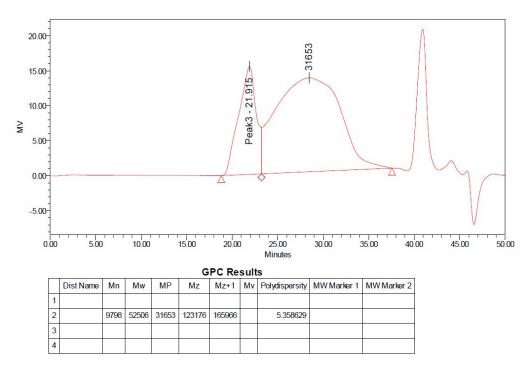




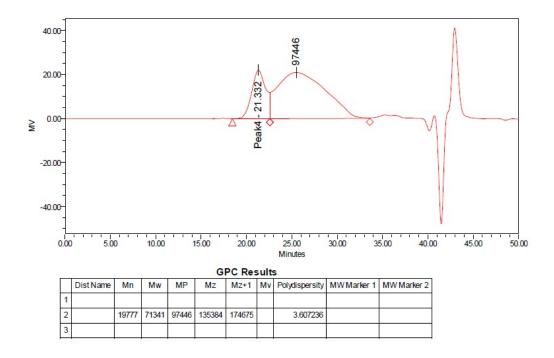

Starch-Allyl-Bn + 20 μ L TFA-d (20-80; table 1, entry 7)


Starch-Allyl-Bn + 20 μ L TFA-d (20-80; table 1, entry 9)

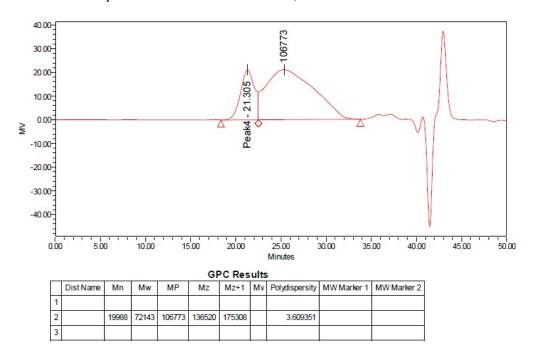
Compilation of SEC chromatographs of starch derivatives


Starch (unmodified, commercial sample - Sigma Aldrich # 33615, lot # SZBE0520V)

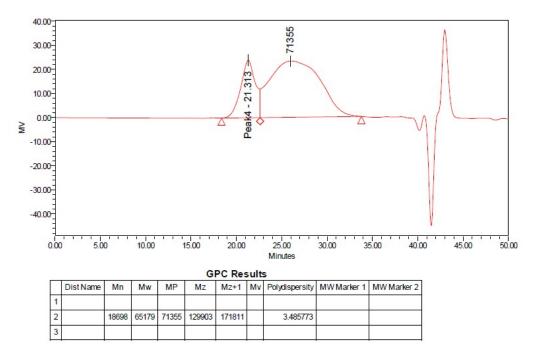
Eluent: 0.1(v/v) % TFA in HPLC H₂O



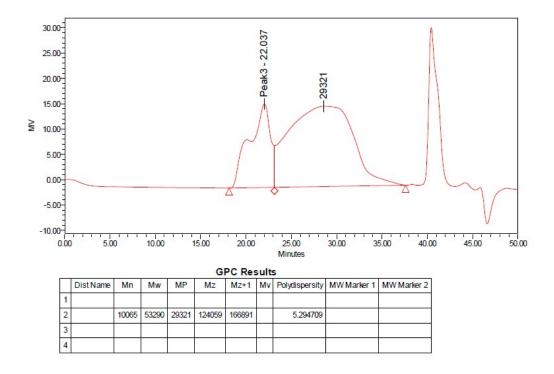
Starch-C4 (entry 1, Table 1)


Eluent: 0.1(v/v) % TFA in HPLC H₂O

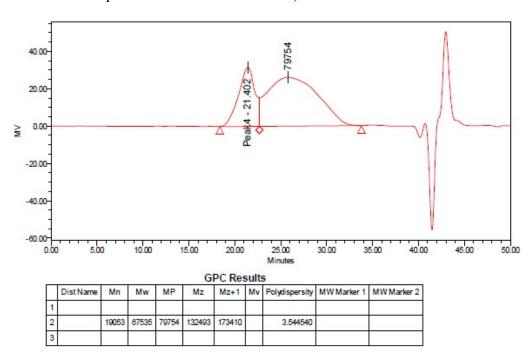
Starch-C4 (entry 1, Table 1)



Starch-Cyclohexyl (entry 2, Table 1)

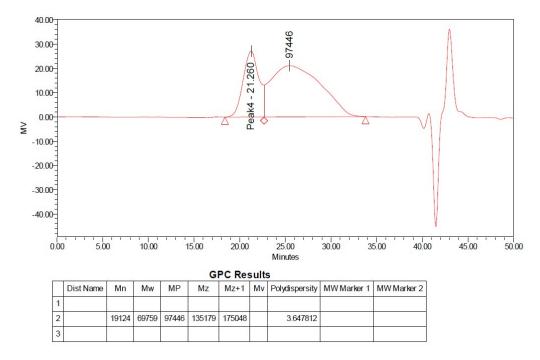

Starch-Bn (entry 4, Table 1)

Eluent: HPLC H_2O : methanol: acetic acid = 54: 23: 23 with 0.5 M sodium acetate (salt concentration with respect to entire solvent mixture)

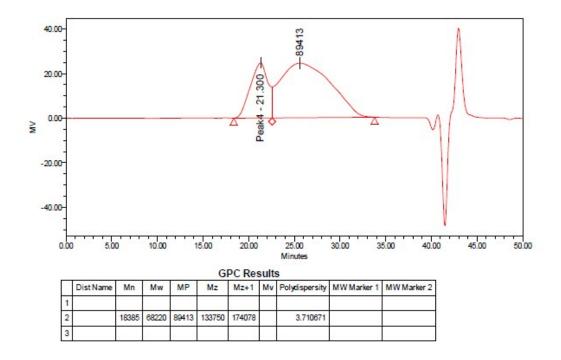


Starch-Allyl (entry 5, Table 1)

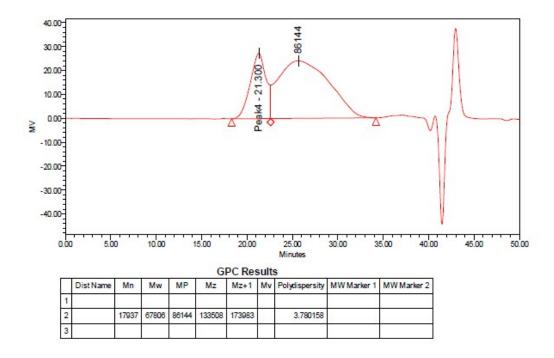
Eluent: 0.1(v/v) % TFA in HPLC H₂O



Starch-Allyl (entry 5, Table 1)



Starch-Allyl –Bn (50-50) (entry 6, Table 1)


Eluent: HPLC H_2O : methanol: acetic acid = 54: 23: 23 with 0.5 M sodium acetate (salt concentration with respect to entire solvent mixture)

Starch-Allyl-Bn (20-80) (entry 7, Table 1)

Starch-Allyl-Bn (20-80) (entry 8, Table 1)

Starch-Allyl-Bn (20-80) (entry 9, Table 1)

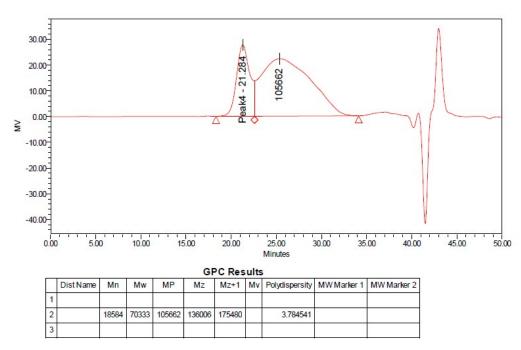


Table S1. Summary of SEC data

Sample	Entry in table 1	Eluenta	Major fraction			Minor fraction ^c	
			M _n (kDa)	Ð	% area under the curve	Peak elution time (min)	% area under the curve
Starch (unmodified)	NA	1	8.4	3.05	100	NA	NA
Starch-C4	1	1	9.8	5.36	76.2	21.92	23.8
Starch-C4	1	2	20.0	3.61	77.3	21.31	22.7
Starch-Cyclohexyl	2	2	19.8	3.61	76.6	21.33	23.4
Starch-Bn	4	2	18.7	3.49	77.0	21.31	23.0
Starch-Allyl	5	1	10.1	5.29	74.7	20.1, 22.04 ^b	25.3
Starch-Allyl	5	2	19.1	3.54	71.9	21.40	28.1
Starch-Allyl-Bn (50-50)	6	2	19.1	3.65	71.2	21.26	28.8
Starch-Allyl-Bn (20-80) - 1	7	2	18.3	3.71	74.0	21.30	26.0
Starch-Allyl-Bn (20-80) - 2	8	2	17.9	3.78	73.7	21.30	26.3
Starch-Allyl-Bn (20-80) - 3	9	2	18.6	3.78	75.0	21.28	25.0

NA = not applicable; a = 1, 0.1 (v/v) % TFA in HPLC H_2O or 2, corresponding to HPLC H_2O : methanol: acetic acid = 54: 23: 23 with 0.5 M sodium acetate (salt concentration with respect to entire solvent mixture); b = minor fraction was multimodal with two peaks; c = minor fraction was beyond the exclusion limit of our column.

Table S2. Zeta potential of selected samples at 1.0 mg/mL concentration at 25 °C

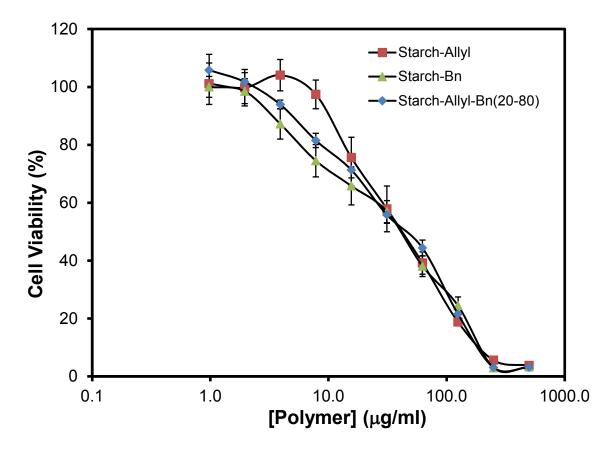

Sample		Zeta potential (mV)	Standard deviation
Starch (unmodified)	-	- 36.0	± 3
Starch-Bn	entry 4, table 1	+ 62.3	± 2
Starch-Allyl	entry 5, table 1	+ 60.4	± 2
Starch-Allyl-Bn (20-80) - 2	entry 8, table 1	+ 61.5	± 1

Table S3. Minimum inhibitory concentrations (MIC) of different batches of Starch-Allyl-Bn(20-80)

Sample	SA (ppm)	EC (ppm)	PA (ppm)
Batch 1 (entry 7, table 1)	15.6	31.3	31.3
Batch 2 (entry 8, table 1)	15.6	31.3	31.3
Batch 3 (entry 9, table 1)	15.6	31.3	31.3

In vitro cytotoxcity

Cytoxicity of selected polymers was investigated against primary human keratinocytes (NK 103) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay after incubation for 18 h. The cells and media were kindly donated by CellResearch Corp. The detailed protocol is provided in our previous publication.^[1]

Figure S2. Viability of keratinocytes when tested against Starch-Allyl, Starch-Bn and Starch-Allyl-Bn(20-80) after 18 h incubation.

Reference:

1. Y. Li, K. Fukushima, D. J. Coady, A. C. Engler, S. Liu, Y. Huang, J. S. Cho, Y. Guo, L. S. Miller, J. P. K. Tan, P. L. R. Ee, W. Fan, Y. Y. Yang, J. L. Hedrick, *Angew. Chem., Int. Ed.* **2013**, *52*, 674.