Supporting Information

Investigation of Green and Sustainable Solvents for Direct Arylation Polymerization (DArP)

Robert M. Pankow, Liwei Ye, Nemal S. Gobalasingham, Neda Salami, Sanket Samal and Barry C. Thompson*

Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661

*Email: <u>barrycth@usc.edu</u>

1. General	
2. Polymer Synthesis	4
3. Monomer NMR	5
4. Polymer NMR	8
5. Polymer GIXRD	
6. References	11

1. General

All reactions were performed under dry N₂ in oven dried glassware, unless otherwise noted. Unless otherwise noted, all reagents were purchased and used as received from commercial sources. Solvents were purchased from VWR and used without purification, unless otherwise noted. Anhydrous, unstabilized cyclopentyl methyl ether (CPME) was purchased and used as received. Cs₂CO₃ was ground into a fine powder and dried at 120 °C in a vacuum oven before use. Tetrahydrofuran (THF) was dried over sodium/benzophenone before distillation. 2-MeTHF was dried over CaH₂ and distilled onto activated molecular sieves (3 Å) prior to use. Diethylcarbonate (DEC) and γ -Valerolactone (GVL) were stirred with K₂CO₃ and distilled onto activated molecular sieves (3 Å) prior to use. 1,4-dibromo-2,5-bis[(2-hexyldecyl)oxy]-benzene (S1), 4,7-di-2-thienyl-2,1,3-benzothiadiazole (S2), and 2-bromo-3-hexyl-thiophene (S3) were prepared following literature procedures.¹⁻⁴ All NMR were recorded at 25 °C using CDCl₃ on either a Varian Mercury 400 MHz, Varian VNMRS-500 MHz, or a Varian VNMR-600 MHz. All spectra were referenced to CHCl₃ (7.26 ppm), unless otherwise noted. Number average molecular weight (M_n) and polydispersity (D) were determined by size exclusion chromatography (SEC) using a Viscotek GPC Max VE 2001 separation module and a Viscotek Model 2501 UV detector, with 70 °C HPLC grade 1,2-dichlorobenzene (o-DCB) as eluent at a flow rate of 0.6 mL/min on one 300 × 7.8 mm TSK-Gel GMHHR-H column (Tosoh Corp). The instrument was calibrated vs. polystyrene standards (1050-3,800,000 g/mol), and data were analysed using OmniSec 4.6.0 software. Polymer samples were dissolved in HPLC grade odichlorobenzene at a concentration of 0.5 mg ml-1, stirred at 65 °C until dissolved, cooled to room temperature, and filtered through a 0.2 µm PTFE filter.

For polymer thin-film measurements, solutions were spin-coated onto pre-cleaned glass slides from *o*-dichlorobenzene (*o*-DCB) solutions at 7 mg/mL. UV–vis absorption spectra were

obtained on a Perkin-Elmer Lambda 950 spectrophotometer. Thicknesses of the samples and grazing incidence X-ray diffraction (GIXRD) measurements were obtained using Rigaku diffractometer Ultima IV using a Cu K α radiation source ($\lambda = 1.54$ Å) in the reflectivity and grazing incidence X-ray diffraction mode, respectively. Crystallite size was estimated using Scherrer's equation:

$$\tau = K\lambda/(\beta \cos\theta) \tag{1}$$

where τ is the mean size of the ordered domains, K is the dimensionless shape factor (K = 0.9), λ is the x-ray wavelength, β is the line broadening at half the maximum intensity (FWHM) in radians, and θ is the Bragg angle.

2. Polymer Synthesis

General procedure for PPDTBT synthesis using a high-pressure vessel:

An oven-dried 15 mL high pressure vessel equipped with a stir-bar was stoppered with a rubberseptum and cooled under a flow of N₂. S1 (0.25 mmol), S2 (0.25 mmol) Cs₂CO₃ (3 equiv.), and P(o-anisyl)₃ (8 mol %) were added to the vessel. The solvent was then added to the vessel via syringe to achieve the appropriate monomers' concentration, and it was degassed for 15 min. using N₂. Pd₂dba₃ (2 mol %) was then added quickly and the rubber septum replaced with a Teflon screw-cap with a rubber o-ring. The vessel was then submerged in a pre-heated oil bath (120 °C). After the polymerization, the reaction mixture was cooled to room temperature, the product was dissolved in dichlorobenzene, and then precipitated into cold MeOH. The polymer product was filtered off and purified using Soxhlet extraction with MeOH, hexanes, and CHCl₃. The chloroform fraction was concentrated and precipitated into cold methanol, the solid filtered off, and then dried overnight under vacuum.

General procedure for PPDTBT synthesis using a Schlenk-tube:

An oven-dried 15 mL Schlenk-tube equipped with a stir-bar was stoppered with a rubber-septum and cooled under a flow of N₂. S1 (0.25 mmol), S2 (0.25 mmol) Cs₂CO₃ (3 equiv.), and P(oanisyl)₃ (8 mol %) were added to the vessel. The vessel was then vacuum-backfilled with N₂ 3 times. The solvent was then added to the vessel via syringe to achieve the appropriate monomers' concentration, and it was degassed for 15 min. using N₂. Pd₂dba₃ (2 mol %) was then added quickly. The vessel was then submerged in a pre-heated oil bath (120 °C). After the polymerization, the reaction mixture was cooled to room temperature, the product was dissolved in dichlorobenzene, and then precipitated into cold MeOH. The polymer product was filtered off and purified using Soxhlet extraction with MeOH, hexanes, and CHCl₃. The chloroform fraction was concentrated and precipitated into cold methanol, the solid filtered off, and then dried overnight under vacuum.

Poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)](P1-P3). ¹H NMR (600 MHz, CDCl3, 25 °C): δ ppm 8.18 (br, 2H), 7.93 (br, 2H), 7.69 (br, 2H), 7.37 (br, 2H), 4.10 (br, 4H), 2.01 (br, 2H), 1.68 (br, 4H), 1.44–1.23 (m, 44H), 0.86–0.82 (br, 12H).

Poly(3-hexylthiophene) (**P5**). ¹H NMR (600 MHz, CDCl3, 25 °C): δ ppm 6.98 (s, 1H), 2.81 (t, J = 7.8 Hz), 1.72-1.70 (m, 2H), 1.44-1.35 (m, 6H), 0.92 (t, J = 7.2 Hz, 3H).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 $^{13}\mathrm{C}$ NMR of S4 in CDCl₃ at 25 °C.

8

¹H NMR of PPDTBT (P3) in CDCl₃ at 25 °C.

5. Polymer GIXRD

Polymer	2θ (degrees)	d ₁₀₀ (Å)	Height	FWHM (degrees)	Crystallite size (nm)
P1	4.695	18.8060	7652	0.540	14.7
P2	4.653	18.9775	8673	0.518	15.3
P3	4.700	18.7844	16346	0.453	17.5
P4	4.650	18.9863	6362	0.514	15.5
P5	5.249	16.8228	14028	0.467	17.0

6. References

1. R. M. Pankow, N. S. Gobalasingham, J. D. Munteanu and B. C. Thompson, *J. Polym. Sci. A Polym. Chem.*

2F. Livi, N. S. Gobalasingham, B. C. Thompson and E. Bundgaard, J. Polym. Sci., Part A, 2016, 54, 2907–2918.

3 Y. Qiu, J. C. Worch, A. Fortney, C. Gayathri, R. R. Gil and K. J. T. Noonan, *Macromolecules*, 2016, **49**, 4757–4762.

4B. Burkhart, P. P. Khlyabich, T. Cakir Canak, T. W. LaJoie and B. C. Thompson, *Macromolecules*, 2011, 44, 1242–1246.