
Supplementary Information II

Blocky Bromination of Syndiotactic Polystyrene via Post-Polymerization
Functionalization in the Heterogeneous Gel State

Kristen F. Noble,a Alexandria M. Nobleb Samantha J. Talleya and Robert B. Moore*a

aDepartment of Chemistry and Macromolecules Innovation Institute, Virginia Tech,
Blacksburg, VA 24061

bGrado Department of Industrial and Systems Engineering, Virginia Tech,
Blacksburg, VA 24061

% This code simulates copolymers with specified degrees of functionalization
%and random or blocky microstructures and then calculates (1) the sequence
%length and frequency of consecutive units; (2) the probability that a unit
%exists in a crystallizable segment; and (3) the prevalence of unique triad
%sequences in the copolymer chain
% This code was created using MATLAB® R2017a programming software

% Authors: Alexandria M. Noble & Kristen F. Noble

%% Variables
chain_length = 1442; % number of units in one chain
amt = 0.55; % fraction of inaccessible styrene units (for a random copolymer

amt = 0)
keep_size = 5; % units in the inaccessible block (Note: for the purpose of

demonstrating how the inaccessible block is created the below code is
written for a keep_size of 5, however the code can be modified for any
desired keep_size by following the format of
Block_InaccessibleFraction.m, shown below. This work used a %keep_size
of 53.

r = 1000; % defines the iterative process that generates r number of chains
ts = 3; % defines that triad sequences will be counted (Note: the code can

be modified for any desired sequence (e.g., pentads, heptads, etc.) by
following the format of TriadSequenceCounting.m, shown below.

l = 26; % units in one crystallizable segment
percent_functionalization = transpose(0.0:0.02:0.40); % Simulated degrees of

functionalization (0-40% at intervals of 2%)

% The copolymer chain will contain 1’s to represent styrene (s) units and 0’s

to represent brominated (b) styrene units.

%% Outputs
keep = []; % stores the fixed styrene indices to create the inaccessible

fraction
chain_matrix = []; % stores all chains for one degree of functionalization
store_avg = []; % stores the average prevalence for each degree of

functionalization
store_sd = []; % stores the standard deviation of the prevalences for each

degree of functionalization
P = []; % stores the probability that a 1 exists in a segment length of j

consecutive 1 units

Electronic Supplementary Material (ESI) for Polymer Chemistry.
This journal is © The Royal Society of Chemistry 2018

store_P = []; % stores the probability that a 1 exists in a crystallizable
segment for each chain

Table = []; % stores the average and standard deviation of the probability
that a 1 exists in a crystallizable segment for each degree of
functionalization

for vt = 1:size(percent_functionalization,1) % for each degree of

functionalization
 store_P = [];
 for uu = 1:r % generates r number of chains and performs the following

on each chain

 chain = transpose(ones(1,chain_length)); % creates a chain of 1's of

length chain_length
 q = round(amt*floor(chain_length)); % defines the number of

inaccessible 1’s by the predefined amount (amt)

 fixed_styrene = randsample(chain_length,q); % selects the

inaccessible 1's by random chance

%% run Blocky_InaccessibleFraction.m % code below

%% Blocky_InaccessibleFraction.m
% This code establishes the monomer units in the inaccessible fraction
% Note that for the purpose of demonstrating how the inaccessible block is
%created the below code is written for a keep_size of 5, however the code can
%be modified for any desired keep_size by following the format below. %This
%work used a keep_size of 53.
% This code was created using MATLAB® R2017a programming software

% Authors: Alexandria M. Noble & Kristen F. Noble

%% -- Begin Code Blocky_InaccessibleFraction -- %%
 keep = []; % stores the fixed styrene indices to create the

inaccessible fraction

 for k = 1:size(fixed_styrene,1) % repeat until k is the size of the

fixed styrene matrix (based on the predetermined percent
functionalization and chain length)

 while size(keep,1)< q % while the size of the keep matrix is
less than the number of inaccessible 1’s (q) established above

 if keep_size == 5
 if fixed_styrene(k)-1<1 % prevents the styrene index

from being less than 1 (if fixed_styrene = 1 then keep 1,2,3)
 keep =

[keep;fixed_styrene(k);fixed_styrene(k)+1;fixed_styrene(k)+2];
 elseif fixed_styrene(k)-1<2
 keep = [keep;fixed_styrene(k)-

1;fixed_styrene(k);fixed_styrene(k)+1;fixed_styrene(k)+2];
 elseif fixed_styrene(k)+1 > chain_length % prevents the

styrene index from being greater than the chain length (if chain_length
= 1442 and fixed_styrene = 1442 then keep 1440,1441,1442)

 keep = [keep;fixed_styrene(k)-2;fixed_styrene(k)-
1;fixed_styrene(k)];

 elseif fixed_styrene(k)+2 > chain_length

 keep = [keep;fixed_styrene(k)-2;fixed_styrene(k)-
1;fixed_styrene(k);fixed_styrene(k)+1];

 else
 keep = [keep;fixed_styrene(k)-2;fixed_styrene(k)-

1;fixed_styrene(k);fixed_styrene(k)+1;fixed_styrene(k)+2];
 end
 end
 end
 keep = unique(keep);
 end

%% -- End Code Blocky_InaccessibleFraction -- %%

 q2 = round(percent_functionalization(vt)*floor(chain_length)); %

gives integer value for the percent functionalization (e.g., 40%*length
of chain)

 I2 = transpose(1:1:chain_length); % converts a row of integer values
into a column

 xr = []; % specifies which indices are in the accessible fraction

based on indices in the inaccessible fraction
 for n = 1:size(keep,1)
 xr = [xr;find(I2 == keep(n))];
 end

 I2(xr) = []; % stores the indices not in keep

 rand_bromine = randsample(I2,q2); % selects at random without

replacement indices in the chain

 chain(rand_bromine,1) = 0; % changes specified indices in

rand_bromine to zeros
 chain_matrix(:,uu) = chain;

 x1 = find(chain == 0); % identify bromines
 x2 = find(chain == 1); % identify indices where chain is equal to 1

 chain_f(x1,1)={'b'}; % change all 0's in the chain to 'b' for

bromine
 chain_f(x2,1)={'s'}; % change all 1's in the chain to 's' for

styrene

 %% run TriadSequenceCounting.m %code below

%% TriadSequenceCounting.m
% This code indexes the triad combinations in the chain, calculates the
%frequency and prevalence of the unique triad sequences, and creates a matrix
%of the average and standard deviation of the triad sequence prevalences
%calculated from all generated chains
% Note: this code can be modified for any sequence length (e.g., pentad,
heptad, %etc.)
% This code was created using MATLAB® R2017a programming software

% Authors: Alexandria M. Noble & Kristen F. Noble

%% -- Begin Code TriadSequenceCounting -- %%

 tpseq = {}; % stores the triad sequences identified in the loop
below

 for i = 1:chain_length % loop that repeats based on the chain length
 if i <= chain_length-(ts-1) % if the step (i) is less than or

equal to the (chain length)-ts-1
 indices = i:1:i+(ts-1); % then indices are selected as

shown
 if ts == 3
 tpseq = [tpseq;

[char(chain_f(indices(1))),char(chain_f(indices(2))),char(chain_f(indic
es(3)))], {indices}]; % makes triad sequences from the chain

 end
 end
 end

 if ts == 3 % if calculating the prevalence of triad sequences
 k = 8; % there are 8 possible sequences

 C = {'sss'; 'ssb'; 'sbs'; 'sbb'; 'bss'; 'bsb'; 'bbs'; 'bbb'}; %

creates an array of the 8 possible triad sequences
 C = table(C,C,zeros(size(C,1),1),zeros(size(C,1),1)); % creates

a table to store the triad sequences, their frequency, and their
prevalence

 C.Properties.VariableNames = {'SeqA','SeqB','Freq','Theo_Prev'};

 for i = 1:size(C,1) % for each triad sequence in column SeqA,

identify the unique triad sequences in the chain and count their
frequency (e.g., C.SeqA(i))

 flipped = {fliplr(C.SeqA{i,1})}; % flip C.SeqA in order to
count forward and reverse variants of the sequence

 if strcmp(C.SeqA(i),flipped) % if SeqA equals the flipped

SeqA (e.g., SeqA = 'sss')
 x = find(strcmp(C.SeqA(i),tpseq(:,1))); % identify the

indices in tpseq where SeqA(i) occurs
 C.SeqB(i) = C.SeqA(i); % SeqA == SeqB
 C.Freq(i) = size(x,1); % obtain the size of x, which is

the frequency of each of the symmetric triad sequences without double
counting

 else % if SeqA does not equal the flipped SeqA (SeqA(i) is

asymmetric)
 C.SeqB(i) = flipped; % populate column SeqB with the

appropriate variant from SeqA (e.g., 'ssb' = 'bss')
 x = size(find(strcmp(C.SeqA(i),tpseq(:,1))),1)+...
 size(find(strcmp(flipped,tpseq(:,1))),1); % obtain

the size of tpseq for the locations of C.SeqA(i) and the variant in
C.SeqB(i) and add the two size functions together to determine the
overall frequency

 C.Freq(i) = x ; % records the overall frequency of
asymmetric SeqA(i) and its variant

 end
 end
 end

 C.Theo_Prev = C.Freq/size(tpseq,1); % calculates the prevalence of

each triad sequence as the ratio of the frequency to the total number
of triads in the chain (size of tpseq)

 prev(:,uu) = C{:,4}; % stores the prevalences for each triad

sequence from all generated chains
 avg_prev = mean(prev,2); % calculates the average of the prevalences
 sd_prev = std(prev,[],2); % calculates the standard deviation of the

prevalence

%% -- End Code TriadSequenceCounting -- %%

% Length and frequency of consecutive units

 string = sprintf('%d',chain); % Converts the chain matrix into a

string with no spaces

 t1=textscan(string,'%s','delimiter','0','multipleDelimsAsOne',1); %

reads the consecutive 1's from the string using 0's as delimiters (to
calculate the segment length of consecutive bromine, the delimiter
should be changed from 0 to 1)

 s = t1{:}; % computes the length of each consecutive segment in the
string

 data = cellfun('length',s); % assigns the length of each segment
(e.g., 111 = 3, 111111 = 6)

 [number_times segment_length] = hist(data, 1:(chain_length)); %

makes matrices of the segment_lengths and their frequencies in the
string

 Table1 = transpose([segment_length;number_times]); % converts the

above arrays into one matrix of segment length and frequency

% Calculate the probability that a 1 is from a segment of at least the

crystallizable segment

 j = Table1(:,1); % segment lengths of consecutive styrene units
 P = []; % stores the probability that a 1 exists in a segment length

of j consecutive 1 units

 for t = 1:size(j,1) % for each segment length
 S = Table1(:,1).*Table1(:,2); % calculates the number of 1’s in

each segment length (segment length*frequency)
 wj = (1-percent_functionalization(vt))*(S/(chain_length*(1-

percent_functionalization(vt)))); % probability that a unit chosen at
random is a 1 and is a member of a sequence of j consecutive units

 if j(t) < l % if the segment length is less than that of the

defined crystallizable segment (l) then P = 0
 P = [P; 0]; % Probability based on Flory, P. J., Theory of

Crystallization in Copolymers. T. Faraday Soc. 1955, 51 (0), 848-857.
 elseif j(t) >= l

 P = [P;((j(t)-l+1)/j(t))*wj(t)]; % if the segment length is
at least that of the defined crystallizable segment (l) then calculates
probability based on Flory, P. J., Theory of Crystallization in
Copolymers. T. Faraday Soc. 1955, 51 (0), 848-857.

 end
 end

 sumP = sum(P); % sums all of the P’s to determine the probability

that a unit chosen at random is a 1 from a crystallizable segment
 store_P = [store_P;sumP]; % stores the probability that a 1 exists

in a crystallizable segment for each chain

 end

 store_avg = [store_avg, avg_prev]; % stores the average of the

prevalences (rows) for each degree of functionalization (columns)
 store_sd = [store_sd, sd_prev]; % stores the standard deviation of the

prevalences (rows) for each degree of functionalization (columns)
 p1 = 100.*(mean(store_P)); % calculates the average of the store_P’s for

each degree of functionalization
 p2 = 100.*(std(store_P)); % calculates the standard deviation of the

store_P's for each degree of functionalization
 Table = [Table; percent_functionalization(vt).*100,p1,p2]; % stores the

degree of functionalization and the average and standard deviation of
the probability that a 1 exists in a crystallizable segment

end

