Supporting Information for

One-pot synthesis of highly porous anionic hypercrosslinked polymer for ultrafast adsorption of organic pollutants

Rui Shen,^a Xiaodong Yan,^a Ying-Jun Guan,^a Wei Zhu,^a Tao Li,^a Xun-Gao Liu,^c Yunxing Li,^a and Zhi-Guo Gu^{*a,b}

^a Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China. Tel: +86-510-85917090, Fax: +86-510-85917763, E-mail: zhiguogu@jiangnan.edu.cn

^b International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.

^c College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China

Fig. S1 TG curve of AHCP-1 under N₂ atmosphere.

Fig. S2 FT-IR of AHCP-1 after treatment for one week in different solvents.

Fig. S3 The PXRD pattern of AHCP-1 at wide angel showing broad diffraction for thick amorphous pore wall.

Fig. S4 Zeta potential vs. pH value of AHCP-1.

Fig. S5 Time-dependant electronic absorption spectral change (from 0 to 120 minutes) of the dyes at initial concentration of 20 mg·L⁻¹. (a) MB, (b) RhB, (c) NR, (d) MO.

Fig. S6 (a) Effect of contact time on the dyes adsorption at initial concentration of 200 mg L⁻¹. (b) Pseudo-second-order kinetics of dyes adsorption.

Fig. S7 Linear regression using Langmuir isotherm model (a) and Freundlich isotherm model (b) for RhB, MB, NR, and MO on **AHCP-1**.

Fig. S8 The effect of AHCP-1 dose on the adsorption of MB.

Fig. S9 Linear regression using Langmuir isotherm model (a) and Freundlich isotherm model (b) for BPA, BPS, FBPA, and 4-NP on AHCP-1.

No.	Chemical names	Building units	Yield
1	Sodium tetrakis(4-fluorophenyl)borate	F F F F	33.5%
2	Sodium tetrkis[3,5- bis(trifluoromethyl)phenyl] borate	$F_{3}C$	0.4%
3	Tetraphenylphosphorium tetraphenylborate		74%
4	Sodium tris(1-pyrazolyl)borohydride		0%

Table S1. Additional six building blocks and yields of hypercrosslinking reactions.

Table S2. Average weight change before and after soaking in solvent for one week.

Salvanta	Original weight Soaked weight		W	
Solvents	(mg)	(mg)	weight retention rate	
THF	20.3	19.6	96.6%	
CHCl ₃	20.1	20.0	98.0%	
DMF	20.7	20.0	96.6%	
DMSO	19.8	18.9	95.4%	
aqueous HCl (6 M)	19.5	19.1	97.9%	
aqueous NaOH (6 M)	20.2	19.8	98.0%	

	Langmuir isotherm			Freundlich isotherm		
	$b (L \cdot mg^{-1})$	$q_{ m max}(m mg\cdot g^{-1})$	R^2	$K_{\rm f}$ (L·mg ⁻¹)	п	R^2
MB	2.263	130.7	0.996	112.5	30.99	0.838
RhB	1.879	258.4	0.997	158.4	9.081	0.916
NR	0.348	169.2	0.975	96.36	54.17	0.918
МО	0.944	107.9	0.981	88.81	25.08	0.865

Table S3. Isotherm Parameters for the Adsorption of dyes onto AHCP-1

Table S4. Summary of the maximum adsorption capacity (q_{max}) of Rhodamine B (RhB) on various adsorbents.

Adsorbent	$q_{ m max}/ m mg~g^{-1}$	References
$C_carnauba_CaCl_2$	39.218	S1
Char AC	189.8	S2
MoS_2	49.2	S3
MWCNT-COOH	42.68	S4
Carboxy-GO/zeolite	34.13	S5
FGNC	33.2	S 6
$Cd_6(L)_2(bib)_2(DMA)_4$	67	S7
AHCP-1	255	This work

Table S5. Isotherm Parameters for the Adsorption of Phenolic derivatives micropollutants

 onto AHCP-1.

	Langmuir isotherm			Freundlich isotherm		
	b (L • mg ⁻¹)	$q_{\max} (\mathrm{mg} \bullet \mathrm{g}^{-1})$	R^2	$K_{\rm f}$ (L • mg ⁻¹)	п	R^2
BPA	0.054	540.5	0.992	0.310	3.059	0.986
BPS	0.146	361.1	0.994	0.339	5.767	0.877
FBPA	0.165	467.2	0.993	0.354	4.751	0.987
4-NP	0.052	260.4	0.998	0.268	4.088	0.980

Table S6. Summary of the maximum adsorption capacity (q_{max}) of Bisphenol A (BPA) on various adsorbents.

Adsorbent	$q_{ m max}/ m mg~g^{-1}$	References	
P-CDP	88	<u>S</u> 8	
magnetic rGOs	48.74	S 9	
GQ-02	313.5	S10	
W20N	432.34	S11	
graphene	181.82	S12	
EPI-CDP	84	S13	
PP-g-GMA-OA	45.59	S14	
AHCP-1	540.5	This work	

Organic Pollutants	Space-filling model	Chemical class	Molar mass (g·mol⁻¹)	Molecular 3-D size (Å)
Methylene blue (MB)		Cationic dye	319.8	17.043×8.243×6.815
Rhodamine B (RhB)		Cationic dye	479.01	18.089×14.296×8.265
Neutral red (NR)		Neutral dye	288.77	14.628×7.966×4.640
Methyl orange (MO)		Anionic dye	327.33	19.803×7.084×6.346
Bisphenol A (BPA)		Bisphenol A analogues	228.29	12.215×7.701×6.697
Bisphenol S (BPS)		Bisphenol A analogues	250.27	10.813×7.907×6.501
Hexafluorobisphenol A (FBPA)		Bisphenol A analogues	336.23	12.393×8.494×7.445
4-Nitrophenol (4-NP)		Phenolics	139.11	9.026×6.537×3.335

Table S7. Structural	parameters	for the	eight	organic	pollutants.
					p

References

- S1 V. da Silva Lacerda, J. B. López-Sotelo, A. Correa-Guimarães, S. Hernández-Navarro, M. Sánchez-Báscones, L. M. NavasGracia, P. Martín-Ramos and J. Martín-Gil, *J. Environ. Manage.*, 2015, 155, 67–76.
- S2 T. Maneerung, J. Liew, Y. Dai, S. Kawi, C. Chong and C. H. Wang, *Bioresour. Technol.*, 2016, 200, 350–359.
- S3 X. Wang, J. Ding, S. Yao, X. Wu, Q. Feng, Z. Wang and B. Geng, J. Mater. Chem. A., 2014, 2, 15958.
- S4 O. A. Oyetade, V. O. Nyamori, B. S. Martincigh and S. B. Jonnalagadda, *RSC Adv.*, 2015, 5, 22724–22739.
- S5 Y. Yu, B. N. Murthy, J. G. Shapter, K. T. Constantopoulos, N. H. Voelcker and A. V. Ellis, J. *Hazard. Mater.*, 2013, 260, 330–338.
- S6 J. Ding, B. Li, Y. Liu, X. Yan, S. Zeng, X. Zhang and J. Zhang, J. Mater. Chem. A., 2015, 3, 832–839.
- S7 F. Y. Yi, J. P. Li, D. Wu and Z. M. Sun, Chem.-Eur. J., 2015, 21, 11475-11482.
- S8 A. Alsbaiee, B. J. Smith, L. Xiao, Y. Ling, D. E. Helbling and W. R. Dichtel, *Nature.*, 2015, 529, 190.
- S9 Z. X. Jin, X. X. Wang, Y. B. Sun, Y. J. Ai and X. K. Wang, *Environ. Sci. Technol.*, 2015, 49, 9168–9175.
- S10 G. Q. Xiao, L. C. Fu and A. M. Li, Chem. Eng. J., 2012, 191, 171-176.
- S11 G. Liu, J. Ma, X. Li and Q. Qin, J. Hazard. Mater., 2009, 164, 1275-1280.
- S12 J. Xu, L. Wang and Y. F. Zhu, *Langmuir*, 2012, 28, 8418–8425.
- S13 N. Morin-Crini and G. Crini, Prog. Polym. Sci., 2013, 38, 344-368.
- S14 X. Y Zhou, J. F Wei, K. Liu, N. N Liu and B. Zhou, Langmuir., 2014, 30, 13861–13868.