Electronic Supplementary Information (ESI)

Temperature-Regulated Aggregation-Induced Emissive Self-Healable Hydrogel for Controlled Drug Delivery

Xuemeng Wang,^a Kaiyue Xu,^b Haicui Yao, ^a Limin Chang, ^a Yong Wang,^b Wenjuan Li, ^b Youliang Zhao,^c Jianglei Qin ^{a,} *

^aCollege of Chemistry and Environmental Science, Hebei University, 180 East Wusi Road,

Baoding 071002, China.

^bMedical College, Hebei University, Baoding 071002, China.

^cCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University,

Suzhou 215123, China.

E-mail: <u>qinhbu@iccas.ac.cn</u>

Contents

S1. Synthesis of TPE-2OH.

S2. Synthesis of TPE diethanol.

S3. Synthesis of TPE-2DDMAT.

Scheme S1. Synthesis procedure of TPE-2DDMAT.

Fig. S1 FT-IR spectrum of TPE-[P(DMA₉₄-stat-DAA₃₀)]₂.

Fig. S2 DSC curves of the TPE-[P(DMA-stat-DAA)]₂.

Fig. S3 UV spectra of TPE-2DDMAT and TPE-[P(DMA-stat-DAA)]₂ copolymers.

Fig. S. Fluorescence spectra of polymer TPE-[P(DMA₁₈₇-stat-DAA₆₀)]₂ (a) and TPE-

 $[P(DMA_{98}-stat-DAA_{20})]_2$ (b) at various concentration.

Fig. S5 PL intensity of 1% TPE-[P(DMA94-stat-DAA30)]2 solution with increasing temperatures.

Fig. S6 Fluorescence spectra of hydrogels prepared from TPE- $[P(DMA_{94}-stat-DAA_{30})]_2$ with low ratio of DTDPH cross-linking (the insert is optical image of 25% ratio of cross-linking). **Fig. S7** Comparison of G' of the hydrogels prepared from different copolymers with POE₂₃ DH cross-linking.

Fig. S8 Rheology curve of POE_{23} DH cross-linked TPE-[P(DMA₉₄-*stat*-DAA₃₀)]₂ hydrogel under temperature scan.

Fig. S9 TPE-[P(DMA₉₄-*stat*-DAA₃₀)]₂ hydrogel with PEO₂₃ DH cross-linking was cut into small particles and put into the heart shaped mould with half hydrogel prepared from P(DMA₉₃-*stat*-DAA₃₀) (a); self-healed hydrogel disk prepared from TPE-[P(DMA₉₈-*stat*-DAA₂₀)]₂ with P(DMA₉₃-*stat*-DAA₃₀) hydrogel under room light (b) and 365 nm UV exposure (c).

Fig. S10 Group ratio triggered gel-sol-gel transition of the hydrogel prepared from TPE- TPE-[P(DMA₉₄-*stat*-DAA₃₀)]₂ with PEO₂₃ DH cross-linking.

Fig. S11 In vitro cytotoxicity of TPE- $[P(DMA_{98}-stat-DAA_{20})]_2$ and PEO₂₃ DH solution with various concentration to HeLa cell (a) and JB6 P+ cells (b).

Fig. S12 Confocal microscopy images of the JB6 P+ cell in hydrogel prepared from TPE-[P(DMA₉₄-*stat*-DAA₃₀)]₂ with PEO₂₃ DH cross-linking.

Fig. S13 Optical images of the drug loaded hydrogel before (a) and after (b) drug release; after ground into particles (c) and self-healed into a whole plate (d); and the hydrogel after drug release in pH 5.4 buffer (e).

S1. Synthesis of TPE-2OH.

First, TPE with two phenolic hydroxyl groups (TPE-2OH) was synthesized according to literature.¹ 4-hydroxybenzophenone (2.0 g, 10 mmol) and Zinc dust (2.9 g, 44 mmol) were put into a 250 mL, two-necked, round-bottom flask equipped with a condenser. The oxygen in flask was removed under vacuum and filled with nitrogen for three cycles. After addition of 100 mL anhydrous THF, the mixture was cooled to 0 °C and 2.5 mL TiCl₄ (22 mmol) was slowly injected to the flask. The mixture was warmed gradually to room temperature and then refluxed overnight. The reaction was quenched by 10% K₂CO₃ solution and the product was extracted with CH₂Cl₂ three times. The organic phase was washed with saturated NaCl solution 3 times and dried by anhydrous MgSO₄ overnight. After solvent evaporation, the crude product was purified on a silica-gel column using petroleum ether/ethyl acetate (v/v 1:1) as eluent. A yellow solid of TPE-2OH was obtained with about 75% yield (1.38 g). ¹H NMR (400 MHz, DMSO-d6): 7.04-7.17 (m, 6H), 6.92-6.97 (m, 4H), 6.70-6.75 (m, 4H), 6.47-6.53 (m, 4H).

S2. Synthesis of TPE diethanol.

Then TPE-2OH(1.456 g, 4.0 mmol) was reacted with 2-bromoethanol to prepare TPE diethanol as illustrated in Scheme 1.² TPE-2OH (1.09g, 3 mmol) and 2-bromoethanol (1.48 g, 12 mmol) were dissolved in 20 mL DMF in a 50 mL flask, then 1.66 g (12 mmol) K₂CO₃ was added into the flask and the oxygen inside the flask was removed with nitrogen. Then the flask was immersed into a 60 °C oil bath and the reaction was performed for 24 h. After the mixture was cooled to room temperature, saturated NaCl solution was added to dissolve the K₂CO₃ and the solution was extracted with CH₂Cl₂ (20 mL×5). The organic phase was combined and washed extensively 5 times with saturated NaCl solution to remove 2-bromoethanol. Then the organic phase was dried by anhydrous MgSO₄ overnight. The excess solvent was removed by rotary evaporator, and the crude product was purified on a silica-gel column using petroleum ether/CH₂Cl₂ (1/1) (1.08g, ~60% yield). ¹H NMR (600 MHz, CDCl₃): 7.12-7.05 ppm (m, 4H), 6.93-7.05 ppm (m, 4H), 6.90-6.85 ppm (m, 2H), 6.58-6.53 ppm (m, 2H), 3. 92 ppm (t, 2H).

S3. Synthesis of TPE-2DDMAT.

The TPE-2DDMAT was prepared by condensation of TPE diethanol and DDMAT with DMPA as catalyst and EDC.HCl as dehydrant (Scheme S1).³ 0.90 g (2.0 mmol) TPE diethanol and 2.18 g DDMAT (12 mmol) were dissolved in 25 mL anhydrous CH_2Cl_2 . Then 20 mg DMAP was added as catalyst and 1.15 g EDC.HCl was added as dehydrant. The

mixture was stirred for 24 h at room temperature. The product was washed with NaHCO₃ solution 5 times. After dried by anhydrous MgSO₄, the organic phase was concentrated on a rotary evaporator and purified by silica column with petroleum ether/ethyl acetate (7/3) as eluent. TPE-2DDMAT was obtained as range liquid after dried under vacuum (1.48 g ~65% yield). ¹H NMR (600 MHz, CDCl₃): δ = 7.12-6.75 (m, 18H, CH(ph)), 5.30 (t, 4H, CH₂OCO), 4.72 (t, 4H, OCH₂), 3.29 (t, 4H, SCH₂), 1.80 (s, 12H, C(CH₃)₂).

Scheme S1. Synthesis procedure of TPE-2DDMAT.

Fig. S1 FT-IR spectrum of TPE-[P(DMA₉₄-stat-DAA₃₀)]₂ (casted on KBr pellet).

Fig. S2 DSC Curves of the TPE-[P(DMA-stat-DAA)]₂.

Fig. S3 UV spectra of TPE-2DDMAT solution (in CH₂Cl₂) and TPE-[P(DMA-*stat*-DAA)]₂ water solution.

Fig. S4 Fluorescence spectra of polymer TPE- $[P(DMA_{187}-stat-DAA_{60})]_2$ (a) and TPE- $[P(DMA_{98}-stat-DAA_{20})]_2$ (b) at various concentration.

Fig. S5 PL intensity of 1% TPE-[P(DMA₉₄-stat-DAA₃₀)]₂ solution with increasing temperatures.

Fig. S6 Fluorescence spectra of hydrogels prepared from TPE-[P(DMA₉₄-*stat*-DAA₃₀)]₂ with low ratio of DTDPH cross-linking (the insert is optical image of 25% ratio of cross-linking).

Fig. S7 Comparison of G' of the hydrogels prepared from different copolymers with POE₂₃ DH crosslinking.

Fig. S8 Rheology curve of POE₂₃ DH cross-linked TPE- $[P(DMA_{94}-stat-DAA_{30})]_2$ hydrogel under temperature scan.

Fig. S9 TPE-[P(DMA₉₄-*stat*-DAA₃₀)]₂ hydrogel with PEO₂₃ DH cross-linking was cut into small particles and put into the heart shaped mould with half hydrogel prepared from P(DMA₉₃-*stat*-DAA₃₀) (a); self-healed hydrogel disk prepared from TPE-[P(DMA₉₈-*stat*-DAA₂₀)]₂ with P(DMA₉₃-*stat*-DAA₃₀) hydrogel under room light (b) and 365 nm UV exposure (c).

Fig. S10 Group ratio triggered gel-sol-gel transition of the hydrogel prepared from TPE- TPE-[P(DMA₉₄-*stat*-DAA₃₀)]₂ with PEO₂₃ DH cross-linking. (Credit from Hebei University)

Fig. S11 In vitro cytotoxicity of TPE- $[P(DMA_{98}-stat-DAA_{20})]_2$ and PEO₂₃ DH solution with various concentration to HeLa cell (a) and JB6 P+ cells (b).

Fig. S12 Confocal microscopy images of the JB6 P+ cell in hydrogel prepared from TPE-[P(DMA₉₄*stat*-DAA₃₀)]₂ with PEO₂₃ DH cross-linking (magnification: \times 60. The control is the pure culturemedium).

Fig. S13 Optical images of the drug loaded hydrogel before (a) and after (b) drug release; after ground into particles (c) and self-healed into a whole plate (d); and the hydrogel after drug release in pH 5.4 buffer (e).

References

 Yu, C.; Wu, Y.; Zeng, F.; Li, X.; Shi, J.; Wu, S., Hyperbranched Polyester-Based Fluorescent Probe for Histone Deacetylase via Aggregation-Induced Emission. *Biomacromolecules* 2013, *14* (12), 4507-4514.

(2) Zhu, Y.; Wang, F.; Zhang, C.; Du, J., Preparation and Mechanism Insight of Nuclear Envelope-like Polymer Vesicles for Facile Loading of Biomacromolecules and Enhanced Biocatalytic Activity. *ACS Nano* **2014**, *8* (7), 6644-6654.

(3) Li, H.; Zhang, X.; Zhang, X.; Yang, B.; Yang, Y.; Wei, Y., Ultra-stable biocompatible cross-linked fluorescent polymeric nanoparticles using AIE chain transfer agent. *Polym. Chem.* **2014**, *5* (12), 3758-3762.