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1. General.
3-(4-Methoxyphenyl) propanoic acid (Sigma, 99%), trifluoromethyl trimethylsilane (TMSCF3, J&K, 
99.5%), Tetrabutylammonium fluoride (TBAF, Sigma, 99%), boron tribromide (BBr3, Sigma, 98%), 
methacrylic acid (MAA, J&K, 98%), 4-dimethylamino pyridine (DMAP, Acros, 98%), 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide (EDC, Acros, 99%), 2-bromoisobutylryl bromide (BiBB, Sigma, 
99%), triethylamine (TEA, Sigma, 98%), 2,2’-bipyridine (bpy, Adamas, 99.5%), copper (I) bromide 
(CuBr, Sigma, 99.9%), 5-carboxytetramethyl rhodamine succinimidyl ester (TMR, Sigma, 99%), 3-
morpholinosydnonimine (SIN-1, Sigma, 98%) and cesium fluoride (CsF, Adamas, 98%) were used 
as received. Methoxy poly(ethylene oxide)-based macro-initiator (PEO-Br, Mn,GPC = 2.3 kDa, Mw/Mn 
= 1.02) was prepared according to the literature elsewhere.1 

Nuclear Magnetic Resonance (NMR). 1H NMR, 13C NMR and 19F NMR spectra for the monomer 
and final block copolymer samples were recorded by AVANCE III HD-400 (400 MHz) spectrometer 
with CDCl3 or d8-THF/D2O as the solvent.

Gel Permeation Chromatography (GPC). The molecular weight and polydispersity of all polymer 
samples were measured on a system of multiangle laser light scattering. The system is equipped with 
a Waters degasser, a Waters 515 HPLC pump, a Wyatt Optilab DSP differential refractometer and a 
Wyatt miniDAWN detector. HPLC-grade dimethylformamide (DMF) with 0.1 M LiBr was used as 
eluent at a flow rate of 1.0 mL min-1 at 30 oC and poly(ethylene oxide) as a standard reference.

Transmission Electron Microscopy (TEM). TEM images were measured on a FEI Tecnai G2-F20 S-
TWIN instrument at a voltage of 120 kV. The specimens were prepared by drop-casting polymer 
aggregates solution (10 μL) onto carbon-coated grid and freeze-drying before observation.

UV-Vis Spectroscopy (UV-Vis). UV-Vis absorption spectra of the MATFK monomer (10 μM) with 
equal molar ONOO- (10 μM in PBS buffer, pH=7.4) were recorded by using an Agilent Cary-60 UV-
Vis spectroscopy at given time intervals. The turbidity of the polymer assemblies (1.8×10-4 g L-1) 
upon various ONOO- stimuli conditions (1.0, 0.7 and 0.4 equiv.) were analyzed at 550 nm 
wavelength.

Fluorescent Spectroscopy (FS). The fluorescent changes of PEO-b-P(MATFK-co-TMR) polymer 
nanoparticles (1.8×10-4 g L-1) upon treatment with various concentrations of ONOO- were conducted 
by a SHIMADZU RF-5301PC fluorescent spectroscopy.

Dynamic Light Scattering (DLS). The hydrodynamic diameter (Dh) changes of the different polymer 
assemblies in aqueous solution were conducted on a Brookhaven (BI-200SM) system equipped with 
a sensitive avalanche photodiode detector (BI-APD), a digital correlator (TurboCorr). The scattering 
angel is fixed on 90o for all the aggregates. Before the DLS measurements, the polymer solution were 
filtered.

Confocal Laser Scanning Microscope (CLSM). For confocal imaging in live cells, endothelial cells 
were cultured on glass-bottom 6-well plates overnight, then incubated with PEO-b-P(MATFK-co-
TMR) polymer nanoparticles (1.8×10-4 g L-1) at 37 oC for 30 min. Then the changes of the polymer 
nanoparticulate fluorescence in live cells with different concentrations of 3-morpholinosydnonimine 
(SIN-1, a stable ONOO- donor reagent at 0 nM, 10 nM, 50 nM and 100 nM, respectively) stimulus 
were captured by confocal microscope (Nikon C2+) for 30 min.

Mass Spectroscopy (HR ESI-MS). The molecular weight of the functional monomer was measured 
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https://en.wikipedia.org/wiki/1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide


on a high-resolution electrospray ionization mass spectrometry (Bruker McriOTOF11).

2. Synthesis and Preparation.
2.1 Synthesis of ONOO- Specific-Responsive Functional Monomer (MATFK)
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Scheme S1. Synthetic route of ONOO- responsive functional monomer, 4-(trifluoro-3-oxobutyl) 
phenyl methacrylate (MATFK)

Synthesis of ethyl 3-(4-methoxyphenyl) propanoate. 
To a solution of 3-(4-methoxyphenyl) propanoic acid (5.10 g, 28.3 mmol) in ethanol (40 mL) was 
added H2SO4 (1.4 mL, 98%). The mixture was refluxed for 12 h. Then ethanol was removed under 
reduced pressure, and the residue was added ethyl acetate (50 mL). The resulting solution was treated 
with H2O (50 mL), saturated sodium bicarbonate and saturated sodium chloride, respectively. The 
organic phase was dried with anhydrous Na2SO4, and then concentrated under reduced pressure, 
which obtained 3-(4-methoxyphenyl) propanoate (yield: 5.62 g, 95%; Figure S1‒S2). 

1H NMR (δ, ppm, CDCl3): 7.11-7.13 (d, J = 8.8 Hz, 2H, benzene), 6.82-
6.84 (d, J = 8.7 Hz, 2H, benzene), 4.09-4.15 (q, J = 7.1 Hz, 2H, CH3CH2O-), 
3.77 (s, 3H, CH3O-), 2.87-2.91 (t, J = 7.5 Hz, 2H, -CH2CH2COO-), 2.56-
2.60 (t, J = 7.5 Hz, 2H, -CH2CH2COO-), 1.22-1.25 (t, J = 7.1 Hz, 3H, 

CH3CH2O-).
13C NMR (δ, ppm, CDCl3): 173.0, 158.0, 132.7, 129.3, 113.9, 60.4, 55.2, 36.3, 30.1, 14.2.

Synthesis of (2-ethoxytrifluoro-(4-methoxyphenyl)butan-2-yl) trimethylsilane.
To a solution of 3-(4-methoxyphenyl) propanoate (5.62 g, 27.0 mmol) and TMSCF3 (6.0 mL, 40.5 
mmol) was added CsF (41.0 mg, 0.27 mmol). The mixture was stirred at room temperature for 12 h 
and then hexane (30 mL) was added to the resulting solution, the mixture was washed with water and 
saturated sodium chloride respectively. The organic phase was dried with Na2SO4, and then was 
concentrated under reduced pressure. The residue was purified by silica gel column chromatography 
(hexane) to obtain (2-ethoxytrifluoro-(4-methoxyphenyl)butan-2-yl) trimethylsilane. (yield: 8.33 g, 
88%; Figure S3‒S4).

1H NMR (δ, ppm, CDCl3): 7.13-7.15 (d, J = 8.7 Hz, 2H, benzene), 6.85-6.87 
(d, J = 8.6 Hz, 2H, benzene), 3.81 (s, 3H, CH3OCCHCH-), 3.66-3.74 (m, 2H, 
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CH3CH2OC-), 2.67-2.74 (m, 2H, -CH2CH2CO-), 2.00-2.15 (m, 2H, -CH2CH2CO-), 1.24-1.28 (t, J = 
7.0 Hz, 3H, CH3CH2OC-), 0.24 (s, 9H, CH3Si-).
13C NMR (δ, ppm, CDCl3): 158.1, 133.6, 129.3, 125.1, 114.1, 98.0, 59.3, 55.4, 36.2, 28.0, 15.6, 1.7.
19F NMR (δ, ppm, CDCl3): -79.99.

Synthesis of trifluoro-4-(4-methoxyphenyl) butan-2-one.
The above products (8.00 g, 22.9 mmol) was added TBAF (1 M in THF, 30 mL) dropwise. The 
mixture was stirred at room temperature for 8 h and then was treated with hydrochloric acid (4.0 M, 
10 mL) for 5 h. Ethyl acetate (30 mL) was added to the resulting solution, which was washed with 
water, saturated sodium bicarbonate and saturated sodium chloride respectively. The organic phase 
was dried with anhydrous Na2SO4, and then was concentrated under reduced pressure. The residue 
was purified by silica gel column chromatography (hexane/ethyl acetate 20:1) to obtain trifluoro-4-
(4-methoxyphenyl)butan-2-one (yield: 5.22 g, 98%; Figure S5‒S6).

1H NMR (δ, ppm, CDCl3): 7.10-7.13 (d, J = 8.8 Hz, 2H, benzene), 6.83-6.85 
(d, J = 8.7 Hz, 2H, benzene), 3.79 (s, 3H, CH3OCCHCH-), 3.02-3.04 (m, 2H, 
-CH2CH2COCF3), 2.91-2.94 (m, 2H, -CH2CH2COCF3).
13C NMR (δ, ppm, CDCl3): 190.6, 158.4, 131.3, 129.3, 117.0, 114.1, 55.2, 

38.4, 27.5.
19F NMR (δ, ppm, CDCl3): -79.33.

Synthesis of trifluoro-4-(4-hydroxyphenyl) butan-2-one
To a solution of trifluoro-4-(4-methoxyphenyl) butan-2-one (5.22 g, 22.5 mmol) in CH2Cl2 (20 mL) 
was added BBr3 (12 mL, 31.2 mmol) dropwise slowly at -78 oC under argon. The mixture was then 
warmed to room temperature and stirred overnight. After ice water (20 mL) was added slowly to the 
resulting solution, ethyl acetate (50 mL) was added subsequently. The mixture was treated with water, 
saturated sodium bicarbonate and saturated sodium chloride respectively. The organic phase was 
dried with Na2SO4 and the solvent was removed in vacuum to give a brown oily liquid which was 
purified by silica gel column chromatography (hexane/ethyl acetate 4:1) to yield trifluoro-4-(4-
hydroxyphenyl) butan-2-one (yield: 4.23 g, 86%; Figure S7‒S8).

1H NMR (δ, ppm, CDCl3): 7.06-7.08 (d, J = 8.6 Hz, 2H, benzene), 6.76-6.78 
(d, J = 8.6 Hz, 2H, benzene), 4.64 (br, 1H, HOCCHCH-), 2.99-3.03 (m, 3H, 
-CH2CH2COCF3), 2.91-2.94 (m, 2H, -CH2CH2COCF3).
13C NMR (δ, ppm, CDCl3): 191.5, 154.0, 131.6, 121.8, 115.7, 38.3, 27.4.

19F NMR (δ, ppm, CDCl3): -79.26.

Synthesis of 4-(trifluoro-3-oxobutyl) phenyl methacrylate (MATFK)
Trifluoro-4-(4-hydroxyphenyl) butan-2-one (1.0 g, 4.59 mmol) in CH2Cl2 (30 mL) was added EDC 
(1.0 g, 5.25 mmol), DMAP (145 mg, 1.2 mmol) and methacrylic acid (410 mg, 4.8 mmol) at room 
temperature under Ar. After the solution was stirred overnight the reaction mixture was quenched 
with saturated sodium bicarbonate and then extracted with DCM three times. The resulting organic 
phase was washed with saturated sodium chloride and dried with Na2SO4, the solvent was 
concentrated under reduced pressure. The residue was purified by silica gel column chromatography 
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(hexane/ethyl acetate 4:1) to obtain 4-(trifluoro-3-oxobutyl) phenyl methacrylate (yield: 0.62 g, 47%; 
Figure S9‒S10).

1H NMR (δ, ppm, CDCl3): 7.21-7.23 (d, J = 8.7 Hz, 2H, benzene), 7.05-
7.07 (d, J = 8.6 Hz, 2H, benzene), 6.34 (m, 1H, CH2=C(CH3)), 5.76 (m, 
1H, CH2=CH(CH3)), 3.04-3.07 (m, 2H, -CH2CH2COCF3), 2.97-3.01 
(m, 2H, -CH2CH2COCF3), 2.06-2.07 (m, 3H, CH3-).
13C NMR (δ, ppm, CDCl3): 190.7, 165.9, 149.6, 136.8, 135.8, 129.3, 

127.3, 121.8, 117.0, 37.9, 27.6, 18.2.
19F NMR (δ, ppm, CDCl3): -79.30.

HR ESI-MS: calcd for [C14H14O3F3 + H]+ 287.0895; found 287.0899.

3.2 Synthesis of Poly(ethylene oxide)-block-PMATFK Diblock Copolymer (PEO-b-PMATFK) 
and Fluorescent Copolymer PEO-b-P(MATFK-co-TMR) via ATRP method
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Scheme S2. Synthetic route of peroxynitrite specific-responsive amphiphilic block copolymer 
PEO-b-PMATFK (top) and PEO-b-P(MATFK-co-TMR) (bottom) via ATRP method.

The PEO-Br macro-initiator in toluene solution was added CuBr, 2,2'-bipyridine (bpy) ligand and 
MATFK monomer with the molar ratio of [CuBr]/[bpy]/[MATFK] = 1/1/100. Followed by three 
freeze-vacuum-thaw cycles, the reactive tube was heated at 90 oC with magnetic stirring for a given 
time. After the setting reaction time, the flask was immersed to liquid nitrogen to stop the radical 
polymerization. Then removing toluene in vacuum, the residue was dissolved in THF and dialyzed 
until the monomer was isolated completely (monitored by UV-Vis spectroscopy). The resulted 
solution was evaporated in vacuum and the target PEO-b-PMATFK copolymers were obtained. The 
results were listed in the following Figure S11‒S12 and Table S1.
In a similar way, the fluorescent block copolymer PEO-b-P(MATFK-co-TMR) was prepared by the 
molar ratio of [CuBr]/[bpy]/[MATFK]/[TMR] = 1/1/90/10. The TMR fluorescent monomer was 
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synthesized according to the literature elsewhere.2 The synthetic process and purification is in a same 
manner.
1H NMR (δ, ppm, CDCl3): 7.13‒7.26 (s, in benzene), 6.96‒7.00 (s, in benzene), 3.64 (s, -CH2CH2O- 
in PEO block), 3.35 (s, -OCH3 in PEO end-capping), 2.90‒3.10 (bs, -CH2CH2COCF3 in PMATFK 
block), 1.15‒1.66 (br, -CH2CH- in PMATFK main chain).
19F NMR (δ, ppm, CDCl3): -79.3 (s)

3.3 Preparation of ONOO- and Other Reactive Oxygen and Nitrogen Species (ROS/RNS)

Peroxynitrite. ONOO- was prepared according to the literature and modified.3 Briefly, to a solution 
of sodium hydroxide (30 mL, 1.5 M) was added sodium nitrite (30 mL, 0.6 M) and the mixture of 
hydrogen peroxide (30 mL, 0.7 M) and hydrochloric acid (0.6 M). It is noted that sodium nitrite and 
acidified hydrogen peroxide was added dropwise via a Y-type pipe with the same pump rate. Then 
activated manganese dioxide (4.0 g) was added to the resulted solution slowly to remove the excess 
hydrogen peroxide. After 15 min later the mixture was filtrated under reduced pressure and bright 
yellow filtrate was split into small aliquots and stored at lower than -18 °C. The operation of all of 
the above was carried out at 4 oC. The concentration of the prepared peroxynitrite was determined by 
testing the absorption of the solution at 302 nm. The extinction coefficient of ONOO- solution in 0.1 
M NaOH is 1670 M −1 cm −1 at 302 nm. CONOO

− = Abs302nm /1.67 (mM).

Hydrogen Peroxide. H2O2 (30 μM) was added to the polymer assemblies for selective responsiveness 
analysis.

Singlet Oxygen. 1O2 was generated by (3-(1,4-dihydro-1,4-epidioxy-1-naphthyl)propi onic acid. It 
(30 μM) was added to the polymer assemblies with stirring at 25 oC.

Superoxide Anion. O2
•- was generated by xanthine and xanthine oxidase. Xanthine oxidase was 

added firstly. After xanthine oxidase was dissolved, xanthine (30 μM) was injected to the polymer 
solution with stirring at 25 oC.

tert-Butyl Hydroperoxide. tBuOO• (70%) solution in H2O was diluted with PBS to gain a 30 μM 
stock solution, which added to the polymer solution with stirring at 25 oC.

Hydroxy Radical. •OH was generated by Fenton reaction between Fe2+ and H2O2. Fresh FeCl2 and 
H2O2 stock solution were prepared for diluting into 30 μM.4

Hyperchlorite. 5% NaOCl solution was purchased from Sigma. It was diluted with PBS to gain a 30 
μM stock solution. The pH was adjusted to 7.4 for adding to the polymer assemblies.

Nitric Oxide. 1-Hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene stock solution (30 
μM) was prepared in 0.1 M NaOH. An appropriate amount of the stock solution was added to generate 
NO. The final mixtures were confirmed to have no notably pH change from 7.4.5



Fig. S1 1H NMR spectra for 3-(4-methoxyphenyl) propanoate in CDCl3

Fig. S2 13C NMR spectra for 3-(4-methoxyphenyl) propanoate in CDCl3



Fig. S3 1H NMR spectra for (2-ethoxytrifluoro-(4-methoxyphenyl)butan-2-yl) trimethylsilane in 
CDCl3

Fig.S4 13C NMR spectra for (2-ethoxytrifluoro-(4-methoxyphenyl)butan-2-yl) trimethylsilane in 
CDCl3



Fig. S5 1H NMR spectra for trifluoro-4-(4-methoxyphenyl) butan-2-one in CDCl3

Fig. S6 13C NMR spectra for trifluoro-4-(4-methoxyphenyl) butan-2-one in CDCl3



Fig. S7 1H NMR spectra of trifluoro-4-(4-hydroxyphenyl) butan-2-one in CDCl3

Fig. S8 13C NMR spectra of trifluoro-4-(4-hydroxyphenyl) butan-2-one in CDCl3



Fig. S9 1H NMR spectra of functional monomer 4-(trifluoro-3-oxobutyl) phenyl methacrylate 
(MATFK) in CDCl3

Fig. S10 13C NMR spectra of functional monomer 4-(trifluoro-3-oxobutyl) phenyl methacrylate 
(MATFK) in CDCl3



Fig. S11 1H NMR spectra for PEO-b-PMATFK block copolymer in CDCl3

Fig. S12 19F NMR spectra for PEO-b-PMATFK copolymer in CDCl3

Table S1. Summary of the Structural Parameters of ONOO--Responsive PEO-b-PMATFK and PEO-
b-P(MATFK-co-TMF) Block Copolymers

Samples Time/h Mn
a/kDa Mw/Mn Dh

b/nm Morphologyc

PEO45-b-PMATFK16 6 7.3 1.27 17 irregular
PEO45-b-PMATFK27 10 10.1 1.45 42.6 sphere
PEO45-b-PMATFK49 24 16.4 1.46 >150 cylinder
PEO45-b-P(MATFK0.92-co-TMR0.08)31 12 11.8 1.41 41.3 sphere

a Determined by GPC using DMF as the eluent at a flow rate of 1.0 mL min-1 at 30 oC; b Determined 
by DLS at room temperature; c The aggregate geometry determined by TEM images



3. Site-Specific Cleavage of MATFK Monomer by ONOO-.
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To further elucidate whether MATFK functional monomer can react with ONOO- stimulus and what 
the reaction mechanism is, we employed ESI-MS and NMR to ensure the chemical structures of the 
products. From the results of mass spectra (Figure S13), the molecule weight of MATFK functional 
monomer was found in 287.0899 [M+H+]. When MATFK was reacted with equivalent molar ONOO- 
for 30 min, we can separated and purified two kinds of products. The molecular weight of product I 
was 235.0528 [M+H+], which is corresponding to 2-hydroxyl-2-trifluoromethyl spiro-dienone.6 The 
other product had a smaller molecular weight of 87.0498 [M+H+]. Combining with its 1H NMR 
spectrum (Figure S14), we could confirm that the product II is methacrylic acid (MAA). These results 
illustrate that ONOO- is able to facilitate an intramolecular epoxidation to attack the adjacent aromatic 
ring, as a result, specifically cleave the MATFK monomer at the site of phenyl ester bond, further 
yielding two products, 2-hydroxyl-2-trifluoromethyl spiro-dienone and MAA, respectively, as Eq.(1).

Fig. S13 ESI-MS results of MATFK monomer upon treatment with ONOO- (1.0 equiv.) for 30 min: 
substrate MATFK (bottom), product I (2-hydroxyl-2-trifluoromethyl spiro-dienone, middle) and 
product II (methacrylic acid, top)



Fig. S14 1H NMR spectrum of Product II obtained from the reaction between MATFK monomer and 
ONOO- in d6-DMSO solvent, which is corresponding to the chemical structure of methacrylic acid 
(MAA).



4. The Side Group Cleavage of PEO-b-PMATFK Copolymer by ONOO-.

Fig. S15 19F NMR spectrum of trifluoromethyl spiro-dienone in CDCl3

Fig. S16 1H NMR spectra comparison between the residual copolymer after reacted with ONOO- and 
the synthetic PEO-b-PMAA block copolymer counterpart. The similar NMR profile indicates that 
PEO-b-PMATFK reacted with ONOO- can yield water-soluble PEO-b-PMAA.

We envisaged that ONOO- sensitive monomer could be introduced into the block copolymer PEO-b-
PMATFK for responsive cleavage. To elucidate this, time-resolved 19F NMR experiment was carried 
out. In the absence of ONOO-, the copolymer displayed a single fluorine signal of trifluoromethyl 
ketone group at δ = -79.3 ppm, corresponding to the MATFK monomer. After injecting ONOO-, this 
peak was gradually weakened while an upfield fluorine signal at δ = -84.3 ppm elevated, which is in 
line with that of trifluoromethyl spiro-dienone form (Figure S15).6 It indicates that our copolymer 
PEO-b-PMATFK can react with ONOO- and disconnect the MATFK side groups to form the product 
of trifluoromethyl spiro-dienone. Since MATFK monomer can react with ONOO- to produce MAA 



and trifluoromethyl spiro-dienone, we deduced that PEO-b-PMATFK reacting with ONOO- can yield 
PEO-b-PMAA copolymer. To demonstrate this, we purified the resulting copolymer and analyzed its 
chemical structure by 1H NMR. PEO-b-PMATFK is a yellow solid and has low solubility in water, 
however, the residual copolymer is white powder and well water-soluble. From 1H NMR spectra, 
only the ethylidene proton peak (δ = 3.64 ppm) ascribed to PEO segment and polymer skeleton proton 
peak in upfield region (δ = 0.9‒1.4 ppm) retained, but the aromatic peaks ascribed to MATFK side 
group totally vanished. Interestingly, a broad proton signal at downfield (δ = 12.3 ppm) was observed, 
which is consistent with the active proton peak of PMAA. We also synthesized PEO-b-PMAA block 
copolymer counterpart by ATRP method. As compared with this counterpart, the residual copolymer 
possess almost the same NMR profile (Figure S16). These findings all indicate that PEO-b-PMATFK 
can react with ONOO-, as a result, leading to the formation of PEO-b-PMAA copolymer as Eq.(2).
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5. Self-Assembly Behavior and ONOO- Responsiveness of PEO-b-PMATFK.

5.1 The Critical Aggregate Concentration (CAC) of PEO-b-PMATFK Block Copolymer
A stock solution of 5.0 mg mL-1 PEO-b-PMATFK in THF (1 mL) was added into 20 mL of deionized 
water under sonication, followed by dialysis against deionized water. After 48 h dialysis for removal 
of the organic phase, the volume of the solution was increased to ~25 mL to obtain an aggregate 
solution with a concentration of 0.2 mg mL-1 for further experiments. The CAC of PEO-b-PMATFK 
block copolymer was measured by the fluorescent probe method.7 10 μL of 1×10-3 mg mL-1 pyrene 
solution in acetone was added to PEO-b-PMATFK aqueous solutions with different concentrations 
and the solutions were sonicated for 10 min before fluorescence emission measurement. The results 
showed that the CAC of PEO-b-PMATFK was determined to be 1.2×10-4 mg mL-1 (Figure S17). 
Thus all the subsequent experiments were carried out above this CAC at the copolymer concentration 
of 1.8×10-4 mg mL-1 (containing 300 nM of MATFK labeled groups).

Fig. S17 Determination of CAC for the PEO-b-PMATFK block copolymer by using fluorescent 
probe method, the CAC is ca. 1.2×10-4 mg mL-1 (The CAC was chosen as the concentration when 
pyrene exhibited an apparent decrease in the I1/I3 ratio with an increasing concentration of the block 
copolymer, indicating that the aggregation of the copolymer)

5.2 ONOO- Concentration-Dependent Disassembly Rates of PEO-b-PMATFK Micelles
The PEO-b-PMATFK copolymer micelles can disassemble upon ONOO- stimulus. We doubted that 
this disassembly behavior is relied on ONOO- concentration. To elucidate this, turbidity experiments 
were carried out via UV-Vis spectroscopy (Figure S18). It is clear when adding 1.0 equiv. ONOO- 
into the micellar solution, the solution transmittance increased rapidly from 23% to 94% within only 
60 min, which results from the formation of water-soluble PEO-b-PMAA unimers. With decreasing 
the ONOO- concentrations from 1.0 equiv. to 0.4 equiv., the increase of solution transmittance 
gradually slowed down from 60 min to 180 min. This result indicates that the micellar dissociation is 
ONOO- concentration-dependent.



Fig. S18 Micellar solution turbidity variation plotted against reaction time at different ONOO- 
concentration conditions: 300 nM (1.0 equiv., ■), 210 nM (0.7 equiv., ■) and 120 nM (0.4 equiv., ■). 
The polymer concentration is 1.8×10-4 mg mL-1, containing 300 nM of MATFK labeled groups.



6. Biological Selective Responsiveness of PEO-b-PMATFK Micelles.

We have demonstrated that our PEO-b-PMATFK micelles possesses ONOO--triggered disassembly 
ability. Because we expected that these smart micelles could be applied in physiological environment, 
thus they should possess highly biological specificity and selectivity to intracellular ONOO- species. 
However, besides ONOO- signaling molecule, there are a series of redox-active reactive oxygen and 
nitrogen species (ROS/RNS) coexisting in cells such as hydrogen peroxide (H2O2), singlet oxygen 
(1O2), superoxide anion (O2

•-), alkyl peroxide (ROO•), hydroxyl radical (•OH), hypochlorous acid 
(OCl-), and nitric oxide (NO). To detect whether they have similar responsiveness, we used UV-Vis 
spectroscopy to monitor their reactivity to the PEO-b-PMATFK copolymer micelles. From the above 
results, it is known that if an irritant can cleave the labeled groups, the typical absorption band of 
MATFK at 278 nm will be depressed but the 2-hydroxyl-2-trifluoromethyl spiro-dienone absorption 
band at 246 nm will increase. Based on this, we could calculate the change of the absorption intensity 
as Eq. (3) in order to evaluate the reactive efficiency. 

𝑅% =  
∆𝐴278

𝐴278
 × 100%…………………..(3)

Fig. S19 UV-Vis spectra changes of PEO-b-PMATFK micellar solution before and after different 
stimuli: a) ONOO- (300 nM, 1.0 equiv.; incubation time kept 1 h and the reactivity as 100% 
reference), b) H2O2 (reactivity is 4.4%), c) 1O2 (reactivity is 3.6%), d) O2

•- (reactivity is 5.8%), e) t-
BuOO• (reactivity is 4.7%), f) •OH (reactivity is 5.2%), g) OCl- (reactivity is 7.1%), h) NO (reactivity 
is 4.5%). All of the ROS/RNS levels are kept at 30 μM, 100 equiv. and the incubation time prolonged 



to 12 h.
As shown in Figure S19a, we found that ONOO- causes the decomposition of PEO-b-PMATFK. 
When we regarded ONOO- irritant as 100% activity, in a similar way, adding other biological 
stimulants into our polymer vesicle system (concentration is 30 μM, 100 equiv.) for half a day led to 
negligible UV-Vis changes (Figure S19b, H2O2; Figure S19c, 1O2; Figure S19d, O2

•-; Figure S19e, t-
BuOO•; Figure S19f, •OH; Figure S19g, OCl-; Figure S19h, NO). These findings confirmed that other 
ROS and RNS have no ability to induce the polymer micellar disassembly and demonstrate that our 
polymer assemblies are of high-specific ONOO--responsiveness.



7. The Possible Mechanism of ONOO--Dependent Fluorescent Sensing.

Fig. S20 The possible mechanisms of the polymer micellar nanoparticle showing ONOO--dependent 

fluorescent sensing a) below and b) upper its LCDT.

From the micellar dissociation experiment by DLS, it was found that the polymer micelles can be 
disassembly upon ONOO- stimulus, and the lowest critical dissociation threshold (LCDT) is 
determined to be 90 nM (0.3 equiv. with respect to the MATFK group in polymer chain). This means 
that if the ONOO- concentration is over 90 nM, an apparent state is that almost all of the micelles are 
dissociation; on the contrary, if the ONOO- level is lower than 90 nM, an apparent phenomenon is 
that the micelles remain their spherical structure but give a small size decrease. In view of these, we 
deduced that the ONOO-sensitive fluorescent mechanism of our polymer micelles is as follows. 
Below the LCDT (<90 nM), the ONOO- detection mechanism arises from a fluorescent turn-on of 
the small amount dissolved unimers escaped from the micellar core. In the absence of ONOO-, the 
micelles are small and tight (~40 nm), which leads to the adjacency of TMR fluorophores in different 
polymer chains. According to Förster resonance energy transfer theory, it is known that the quite 
small distance of two fluorophores can cause fluorescent quenching. Thus, the micelles show 
fluorescent silence. However, when adding a little ONOO- (0~90 nM), although the micelles are not 



completely dissociation, there are also a small amount of polymer chains that respond to ONOO- and 
disassemble from the internal core. These unimers in solution can turn on the TMR fluorescence 
because the distance of TMR moieties increased and exceeded the intermolecular Förster resonance 
energy transfer distance (as shown in new Figure S20a). Moreover, with the increase of ONOO- 
level, the number of unimers has a gradual increase, which results in the enhancement of TMR 
fluorescent intensity. Upper the LCDT (>90 nM), the ONOO- detection mechanism is derived from 
the decrease of intramolecular Förster resonance energy transfer. That is to say, when ONOO- level 
is over 90 nM, the micelles can be nearly complete disrupted into unimers. The contribution of 
fluorescent enhancement from the reduction of intermolecular Förster resonance energy transfer 
(different unimers) seems to be the same. However, the higher concentration ONOO- is, the higher 
cleavage efficiency of MATFK group can be obtained. Thus, the higher ONOO- level can give rise 
to more soluble unimer with relax chain conformation, which further causes the decrease of 
intramolecular Förster resonance energy transfer; as a result, the polymer fluorescence show a further 
increase with ONOO- concentration increase (as shown in new Figure S20b). It is clear that the 
fluorescent detection mechanisms are different before and after the micellar dissociation, but they 
together lead to a result of near-linear fluorescent increase.



8. ONOO- Detection Limit of PEO-b-P(MATFK-co-TMR) Micellar 

Nanoparticles.

Fig. S21 Detection limit of PEO-b-P(MATFK-co-TMR) micelle nanoparticle (1.8×10-4 mg mL-1, 
containing 300 nM of MATFK labeled groups). The copolymer solution in PBS (pH = 7.4) was 
treated with various concentrations of ONOO- and the fluorescent intensity at emission maxima (λem 
= 575 nm) was recorded and the detection limit was determined to be the concentration of ONOO- 
that induced a 3-fold fluorescent increase (detection limit is ~10 nM).



9. Biological Toxicity Evaluation of PEO-b-P(MATFK-co-TMR) Micelles.

Fig. S22. MTT assays for showing the biocompatibility of PEO-b-P(MATFK-co-TMR) micelles of 

varied concentrations on HepG2 cell.
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