Supporting information

Visible-light initiated polymerization of dopamine in a neutral environment for surface coating and visual protein detection

Jinhu Wang, ^a Guolu Ma, ^b Wei Huang, ^a and Yi He*a

a School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China.

b Ministry of Education Key Laboratory of Testing Technology for Manufacturing Process, Southwest University of Science and Technology, Mianyang, 621010, P. R. China.

*Corresponding author: Dr. Yi He, Tel: +86-816-6089885, Fax: +86-816-6089889, Email: yhe2014@126.com.

Figure S1. The emission spectrum of the white LED.

Figure S2. Time-dependent UV-vis absorption spectra for (a) dopamine solution and the mixture of dopamine and Acr⁺-Mes in the dark (b) and under white LED irradiation (c).

Figure S3. Effect of Acr⁺-Mes concentration on oxidation of dopamine under white LED illumination.

Figure S4. AFM image of the PDA-coated glass substrate under white LED illumination for 1 h.

Figure S5. UV-vis absorption spectra of 10 μ M Acr⁺-Mes solution.

Figure S6. Effect of ascorbic acid (AA) concentration on oxidation of dopamine under white LED illumination.

Figure S7. Effect of glutathione (GSH) concentration on oxidation of dopamine under white LED illumination.

Figure S8. Effect of cysteine (Cys) concentration on oxidation of dopamine under white LED illumination.