Supplemental Information

Exploration and development of gold- and silver-catalyzed cross dehydrogenative coupling toward donor-acceptor π -conjugated polymer synthesis

Lauren J. Kang,^a Liwen Xing,^b and Christine K. Luscombe^c

^aDepartment of Chemistry, University of Washington, Seattle, WA 98195 ^bMolecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195 ^cDepartment of Material Science & Engineering, University of Washington, Seattle, WA 98195

Table of Contents

General Procedures	S2
Representative ¹ H NMR spectrum from small molecule studies	S2
Spectral Data of Polymers	
Calculating % Alt, <i>M_n</i> , and Degree of Polymerization (DP) Using ¹ H NMR	S7
Calculations of Deuterium Integration (%)	S8
¹ H NMR for Synthesis of PPh ₃ Au(I)-C ₆ F ₅ with and without Sodium <i>tert</i> -Butoxide (NaO ^t Bu)	
Control Experiment of the Homo-coupling of 2-Methylthiophene	
¹ H NMR for the Reaction Shown in Scheme 7	S10
References	S10

General Procedures

All manipulation of air- and/or moisture-sensitive compounds were carried out using standard Schlenk and glovebox techniques under a dry nitrogen atmosphere. Anhydrous 1,4-dioxane, chloro(triphenylphosphine)gold(I), deuterium oxide, 3,3'-dihexyl-2,2'-bithiophene, gold(III) chloride, 2methylthiophene, 4-nitrotoluene, 2,2',3,3',5,5',6,6'-octafluorobiphenyl, pentafluorobenzene, pivalic acid, sodium trimethylacetate hydrate, and 1,2,4,5-tetrafluorobenzene were used as purchased. Pivaloyloxy-1,2-benziodoxol-3(1H)-one (PBX),^[1] silver pivalate (AgOPiv),^[2] and acetate(triphenylphosphine)gold(I) (PPh₃AuOAc)^[3] were synthesized using previously reported methods. ¹H NMR and ²H NMR spectra were collected on a Bruker AV 500 spectrometer operating at 500 MHz. For ¹H NMR, deuterated chloroform was used. MALDI-TOF measurements were run on a Bruker Autoflex II instrument using *trans*-2-[3-(4-*tert*-Butylphenyl)-2-methyl-2-propenylidene]malononitrile as a matrix. Dispersity values were measured using a Waters Breeze GPC system in chloroform with 0.1 % triethylamine by volume, against a polyethylene glycol/oxide (PEG/PEO) standard, at a flowrate of 1 mg/ml at 30 °C.

Representative ¹H NMR spectrum from small molecule studies

8.2 8.1 8.0 7.9 7.8 7.7 7.6

Figure S1 Representative ¹H NMR spectrum of small molecule coupling studies showing the aromatic region.

7.3 7.2

7.1

7.0 6.9 6.8

6.6

7.5 7.4 f1 (ppm)

Spectral Data of Polymers

MALDI data

Figure S2 Polymer A.

Table S1 Notable *M/Z* values observed from MALDI of Polymer A. *m* and *n* were calculated using the known MWvalues of each monomer species.

M/Z	m	n
3254	8	4
3402	8	5
3476	10	1
3587	9	4
3735	9	5
3920	10	4
4068	10	5

Figure S3 Polymer B.

Table S2 Notable *M/Z* values observed from MALDI of Polymer B. *m* and *n* were calculated using the known MWvalues of each monomer species.

M/Z	m	n
3181	6	4
3218	7	3
3514	7	4
3811	7	5
3847	8	4
4144	8	5

Figure S4 Example MALDI spectrum of Polymer B.

NMR spectra

Figure S6 Example ¹⁹F NMR (470 MHz, CDCl₃) of Polymer B. The presence of multiple peaks supports that the polymer is not a perfectly alternating polymer.

Calculating % Alt, *M_n*, and DP Using ¹H NMR

% Alt, M_n , and DP were calculated using the integration of end groups (I_a , I_b , I_a' , and I_b') and aromatic protons (I_h and I_c) on the chain backbone.

Equation S1. DP calculation, using end-group analysis.

$$DP = \frac{2I_c}{I_a + I_{b'}} + \frac{I_h}{I_a + I_{b'}}$$

Note that $I_a = I_b$ and $I_{a'} = I_{b'}$ and I_a . $I_{b'}$ were chosen because they appear as clean non-overlapping doublets in the NMR spectra.

Equation S2. *M_n* calculation, using end-group analysis.

$$M_n = \frac{I_c}{I_a + I_{b'}} (MW_D + MW_A) + \frac{I_h}{I_a + I_{b'}} MW_D + MW_D$$

Equation S3. % Alt calculation.

% alt =
$$\frac{I_c}{I_c + I_h} * 100$$
 %

Table S3 *M*_{*n*}, and DP of Polymers A and B at different time points during polymerization.

Timepoint (h)	<i>M</i> _n of Polymer A (kg/mol)	DP of Polymer A	<i>M</i> _n of Polymer B (kg/mol)	DP of Polymer B
24	4.1	15	5.6	17
48	4.8	18	6.7	20
96	4.8	18	7.5	22
120	4.9	18	7.9	24
144	4.9	18	8.7	26
168	4.5	16	8.1	25
192	5.1	18	9.4	28

Calculation of Deuterium Incorporation (%)

Figure S7 Example ²H NMR of deuterated product of pentafluorobenzene reacted with AgOPiv and PPh₃AuOAc.

Deuterium incorporation was calculated using ²H NMR integration of the deuterated arene signal (I_P) against the signal of internal standard, 10 μ L deuterated DMSO (0.141 mmol) (I_D).

Equation S4. Deuterium incorporation calculation.

Deuterium incorporation % =
$$\frac{I_P}{I_D} \times \frac{0.141 \text{ mmol} \times 6}{0.1 \text{ mmol}} \times 100 \%$$

¹H NMR for Synthesis of PPh₃Au(I)-C₆F₅ with and without Sodium *tert*-Butoxide (NaO^tBu)

Figure S8 ¹H NMR (500 MHz, CDCl₃) spectra for synthesis of PPh₃Au(I)-C₆F₅ with and without NaO^tBu.

The complex PPh₃Au(I)-C₆F₅ could not be formed in the absence of a base, such as NaO*t*Bu, even when one equivalent of NaOPiv was added. The ¹H NMR of PPh₃Au(I)-C₆F₅ has been reported previously.^[4]

Control Experiment of Homo-coupling of 2-Methylthiophene

Scheme S1 Control experiment to observe homo-coupling of 2-methylthiophene.

When the 2-methylthiophene species was reacted without pentafluorobenzene, 21 ± 8 % yield of the homo-coupled product was formed when run in triplicate.

¹H NMR for the Reaction Shown in Scheme 7

Figure S9 ¹H NMR spectrum of the reaction shown in Scheme 7 of the aromatic region.

References

- [1] X. C. Cambeiro, N. Ahlsten, I. Larrosa, J. Am. Chem. Soc. 2015, 137, 15636–15639.
- [2] D. A. Edwards, R. M. Harker, M. F. Mahon, K. C. Molloy, *Inorganica Chim. Acta* 2002, 328, 134– 146.
- [3] P. García-Domínguez, C. Nevado, J. Am. Chem. Soc. 2016, 138, 3266–3269.
- [4] X. C. Cambeiro, T. C. Boorman, P. Lu, I. Larrosa, Angew. Chemie Int. Ed. 2013, 52, 1781–1784.