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1. Photoinitiators, LED Light Sources and Measurement of UV-Vis
and LFP Spectra

The photoinitiators 2-hydroxy-2-methylpropiophenone (Darocur® 1173, 1) and diphenyl(2,4,6-
trimethylbenzoyl)phosphine oxide (lrgacure® 819, 2) were obtained from Sigma Aldrich.
Diethyldibenzoylgermane (3) was kindly provided by Ivoclar Vivadent AG.
Tetrabenzoylgermane (4) was kindly provided by the research group of Prof. Stueger (Graz

University of Technology).

The intensity of the 385 nm LED was measured using a calibrated spectrophotometer (GL
Spectis 1.0, GL Optic Lichtmesstechnik GmbH, Weilheim, Germany) equipped with an
integrating sphere. The measured power of the LED P (in W) can be translated into the
spectral photon flux Ioin mol s1 L1
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Here, A is the peak wavelength of the light source (in m), h is Planck’s constant (h = 6.63-10-
34 J-s), c is the speed of light in vacuum (c = 299792458 m-s'), N, is Avogadro’s constant
(N4 =6.02-1023 mol'), and V is the reaction volume in L (in our case, we consider a sample

volume of 2 mL).

UV-Vis spectra were recorded on a TIDAS UV-Vis spectrometer (J&M, Germany).
Photoinitiator samples were prepared at concentrations of 1 mM in acetonitrile (Sigma
Aldrich, = 99.9%). Measurements were performed spectrometer in a fluorescence quartz
cuvette (1 cm x 1 cm).

Laser-flash photolysis (LFP) experiments were performed on a LKS80 Laser Flash
Photolysis Spectrometer (Applied Photophysics, UK). Samples were excited with the
frequency tripled light from a Spitlight Compact 100 (InnoLas, Germany) solid state Nd:YAG
laser at 355 nm (~10 mJ/pulse, 8 ns). Rate constants for the quenching of the germyl by
oxygen were determined in pseudo-first-order experiments; solutions of compounds 3 and 4
in acetonitrile containing oxygen concentrations in the range of 0.6 mM to 1.6 mM and
providing absorbance of ~0.3 at 355 nm were prepared. The decay of the germyl radicals
was recorded at the absorption maximum determined from the transient absorption spectra.
Exponential fitting of the decay traces obtained at various quencher concentrations yield the

pseudo-first order rate constants k.,,. The second order oxygen quenching rate constants ko,

T According to IUPAC, the unit “mol s' m3 is the Sl unit for the spectral photon flux (photon
irradiance), see https://goldbook.iupac.org/html/S/S05821.html.



are obtained from the slope of their linear dependence on the oxygen concentration (see
Figure S1).
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Figure S1. Pseudo-first-order decay rate constant (k.,) of radical A(3)* versus oxygen
concentration (excitation wavelength: 355 nm, monitoring wavelength: 480 nm). The slope of
the curve yields ko = 2.90 £ 0.14-10° Lmol-'s".

2. Simulations of Radical Generation at Various Wavelengths and

Light Intensities

Figures S2 and S3 present simulations of the radical generation upon irradiation of 1-4 upon
irradiation at 350 nm and 450 nm. For both wavelengths, simulations were performed for the
same photon flux as for irradiation at 385 nm (/, = 2 x 10°® mol L-'s"). At 350 nm, radical
generation is most efficient for bisacylphosphane oxide 2, while bisacylgermane 3 shows
poor efficiency, which is consistent with the low extinction coefficient of 3 at 350 nm
(compare Figure 1 in the main text). This situation is turned upon irradiation at 450 nm,
where initiator 3 shows the best performance (3 > 4 > 2 >> 1, see Figure S3). When
comparing 3 and 4 at 450 nm, the extinction coefficients are very similar (227 and 214 L mol-
Tem-', respectively), yet the higher quantum yield of 3 results in significantly faster generation
of the primary radicals A* and B* when compared to 4.

Figure S4 demonstrates the effect of increasing the spectral photon flux /,. The radical
generation is simulated at 350 nm for a 10 times higher photon flux when compared to Figure
S1 (lp =2 x 10 mol L's"). As evident from equation 1 (main text), the radical generation

occurs at a 10 times faster time scale in this case.
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Figure S2. Simulated concentration versus time plots for the parent photoinitiators 1-4 and
the primary radicals A(1-4)* and B(1-4)s. Chosen conditions: irradiation at 350 nm (/, =2 10"
5 mol L-'s™), photoinitiator concentrations: 2 mM.
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Figure S3. Simulated concentration versus time plots for the parent photoinitiators 2-4 and

the primary radicals A(2-4)* and B(2-4)s. Chosen conditions: irradiation at 450 nm (/, =2 10

5 mol L' s), photoinitiator concentrations: 2 mM. Compound 1 is not included in this

simulation since it does not absorb light at 450 nm.
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Figure S4. Simulated concentration versus time plots for the parent photoinitiators 1-4 and
the primary radicals A(1-4)* and B(1-4)e for irradiation with a higher photon flux. Chosen
conditions: irradiation at 350 nm (/, = 2" 10 mol L-'s*"), photoinitiator concentrations: 2 mM.

3. Simulations of Radical Generation and Subsequent Addition to

the Monomer

Figures S5-S7 present simulations of initiation reaction for photoinitiators 1, 2 and 4 in bulk
butyl acrylate. The simulations for compounds 2 and 4 were performed for irradiation (low
photon flux /) at 385 nm, while 320 nm were chosen for 1, a wavelength which matches
better with the UV-Vis spectrum of this compound. Figures S5-S7 a) show simulations using
the experimental values of ®, ¢ and k., Whereas in the Figures b)-d) one of these
parameters has been reduced by 50 % to show their impact on the product radical
generation rate. Notably, in all cases, the highest impact on the radical generation rate is
observed upon reduction of the quantum vyield, followed by the extinction coefficient. As
discussed in the main text, a change of the addition rate constants is barely noticeable in the

simulations.
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Figure S5. Simulation of the initiation reaction (radical generation followed by monomer
addition) for compound 1 in bulk butyl acrylate at 320 nm (/, = 2x10° mol L's™,
concentrations: 2 mM 1, 7 M butyl acrylate, M). Concentration versus time plots for a) @ =
038, €320 = 100 L mol! Cm'1, kaddyA(1)- =1.3 x 107 L mol’ S'1, kaddyB(1)- = 2.7 x 105L mol* S'1; b)
@ =0.195, £320= 100 L mol" em™, Kogg,a1)» = 1.3 X 107 L mol' s, kog0,8(1)» = 2.7 X 10°L mol' s-
1, ¢) @ =0.38, £550= 50 L mol'' cm™', kaga,a¢1). = 1.3 X 107 L mol' 871, Kaga,8(1). = 2.7 X 10° L mol-
's1; d) @ =0.38, €350= 100 L mol'' cm™', Kaga,a¢1). = 6.5 X 108 L mol' s, Kaga,g1). = 1.35 x 10°L
mol-'s,
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Figure S6. Simulation of the initiation reaction (radical generation followed by monomer
addition) for compound 2 in bulk butyl acrylate at 385 nm (/, = 2x10° mol L-'s™,
concentrations: 2 mM 2, 7 M butyl acrylate, M). Concentration versus time plots for a) @ =
060, €385 = 740 L mol Cm'1, kaddyA(Z)- =1.1 x 107 L mol’ S'1, kaddyB(Z)- = 1.8 x 105L mol’ S'1; b)
® =0.30, €385= 740 L mol" cm™, Kagg,az)e = 1.1 X 107 L mol' s, k,g0,8¢2- = 1.8 X 105L mol' s7;
c) ®@ = 0.60, €355 = 370 L mol' cm™, Kagaa2)y = 1.1 X 107 L mol' 71, K,g0,8(2- = 1.8 x 10° L mol-
's1; d) @ =0.60, €355 = 740 L mol'' cm™, Kaga,az) = 5.50 x 108 L mol' s, Kaga,z) = 9 x 104L

mol-'s.
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Figure S7. Simulation of the initiation reaction (radical generation followed by monomer
addition) for compound 4 in bulk butyl acrylate at 385 nm (l, = 2x10° mol L-s,
concentrations: 2 mM 4, 7 M butyl acrylate, M). Concentration versus time plots for a) @ =
0.38, €355 = 1060 L mol' cm™, Kagg,az) = 5.9 x 107 L mol' s, koga,82)- = 2.7 X 10°L mol's™'; b)
® =0.19, £355= 1060 L mol' cm™, Kaga,a@2) = 5.9 X 107 L mol' s, Kaga,g(2) = 2.7 X 10°L mol-'s-
1, ¢) @ =0.38, €335= 530 L mol" cm™, Kagaoa2)- = 5.9 x 107 L mol' s, Kaga,e(2)- = 2.7 X 105 L mol-
s1; d) @ =0.38, €385= 1060 L mol'' cm™, Kaga,az) = 2.95 x 107 L mol' s, Kaga,p(z) = 1.35 x 10°
L mol's.

Figures S8-S10 present simulations of initiation reaction for photoinitiators 1, 2 and 4 at high
photon flux /, for bulk and solution polymerizations. The addition rate constants become
relevant under these conditions, leading to a higher initiation efficiency for the more reactive
radicals A(1, 2, 4)c when compared to the less reactive radicals B(1, 2, 4). The effects of the
different addition rate constants are more pronounced in solution polymerization when

compared to bulk polymerizations (compare the main text).
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Figure S8. Simulation of the initiation reaction (radical generation followed by monomer
addition) for compound 1 for photolysis with a hypothetical high power 320 nm lamp (/, =
1000 mol L' s™): a) bulk polymerization (7 M butyl acrylate, M), b) solution polymerization (1
M butyl acrylate, M).
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Figure S9. Simulation of the initiation reaction (radical generation followed by monomer
addition) for compound 2 for photolysis with a hypothetical high power 385 nm lamp (/, =
1000 mol L' s"): a) bulk polymerization (7 M butyl acrylate, M), b) solution polymerization (1
M butyl acrylate, M).
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Figure S10. Simulation of the initiation reaction (radical generation followed by monomer
addition) for compound 4 for photolysis with a hypothetical high power 385 nm lamp (/, =
1000 mol L' s"): a) bulk polymerization (7 M butyl acrylate, M), b) solution polymerization (1
M butyl acrylate, M).



Figure S11 presents simulations of initiation reaction for photoinitiator 3 for both irreversible
and reversible addition of the primary radicals As and Be to butyl acrylate M. For the reverse
rate constant, a value corresponding to 20% of the forward reaction was chosen (see the
main text). Simulations are performed for bulk polymerization under both low and high power

illumination (Figure S11).
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Figure S11. Simulation of the initiation reaction (radical generation followed by monomer
addition) for compound 3 in bulk butyl acrylate under reversible conditions (kg4 a.= 2.6 x 108
L mol's™, Kagd.a- back =5-2 X 107 L mol's™, kogyp. = 2.7 x 10° L mol' s, KaqgB- pack =5-4 x 10% L
mol-'s-'): a) Photolysis with a low power 385 nm LED (/, = 2 x 10> mol L' s"), b) Photolysis
with a hypothetical high power 385 nm lamp (/, = 1000 mol L' s*'). Products formed by
assuming an irreversible addition of the primary radicals As and Be to butyl acrylate M are
marked with (irrev.), and products formed by assuming reversible addition are marked with
(rev.).

Figure S12 presents simulations of initiation reaction of photoinitiator 3 for the (irreversible)
addition of the primary radicals A(3)* and B(3)* to butyl acrylate M, considering the
recombination of two primary radicals as a side reaction. These recombination reaction lead
to the products A(3)-B(3) (equivalent to the parent photoinitiator 3, which can subsequently
be photolyzed again), as well as the products A(3)-A(3) and B(3)-B(3) (see Scheme S1). In
the simulations presented in Figure S12, we assume diffusion controlled recombination

(recombination rate constant k, ~ 10° L mol-'s™").
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Scheme S1. Recombination reactions of primary radicals A(3)* and B(3)e as a side reaction
to monomer addition. Recombination of the radicals A(3)* and B(3)* leads to the
regeneration of the parent photoinitiator 3, which can undergo a subsequent bond cleavage.
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Figure S12. Simulation of the initiation reaction (radical generation followed by monomer
addition) for compound 3 for photolysis with a 385 nm LED (/, = 2x10° mol L's™) in bulk
butyl acrylate (7 M butyl acrylate, M). Recombination of primary radicals is considered as a
side reaction competing with monomer addition.

In Figure S13, the recombination of the primary radicals with a previously formed addition
radical A(3)-Me or B(3)-Me is considered as a side reaction (see Scheme S2). Bimolecular
recombination rate constants k; are reported to be in the order of 106- 108 L mol' s in the
literature (see references 12, 34 and 53 in the main text). Even when assuming a termination
rate constant of 108 L mol-' s*! (upper limit of values reported in the literature), the termination
products A(3)-M-A(3), A(3)-M-B(3), B(3)-M-A(3) and B(3)-M-B(3) are formed to a minor
extent (see Figure S13).
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Scheme S2. Termination reaction via recombination of primary radicals A(3)* and B(3)* with
a previously formed addition radical A(3)-Me or B(3)-Me.
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Figure S13. Simulation of the initiation reaction (radical generation followed by monomer
addition) for compound 3 for photolysis with a 385 nm LED (l, = 2x10°° mol L's™") in bulk
butyl acrylate (7 M butyl acrylate, M). Recombination of primary radicals with an addition
radical A(3)-M- or B(3)-M- is considered as a side reaction.
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4. Simulations of Radical-to-Monomer Addition in Presence of

Oxygen

Figures S14-S16 present simulations of the initiation reaction for photoinitiators 1, 2 and 4 in
presence of oxygen for bulk and solution polymerizations upon irradiation with low power
LED light (320 nm in case of compound 1 and 385 nm in case of compounds 2 and 4). As
observed for compound 3 (see Figure 4 in the main text), the benzoyl radicals B(1,2,4) of
the initiators 1, 2 and 4 are significantly quenched by oxygen due to the low monomer
addition rate constants of these radicals. In case 1, 2 and 4, also the ketyl, phosphanoyl and
germyl radicals A(1,2,4)* undergo oxygen quenching to a significant extend, especially in
solution polymerization. This is due to the lower monomer addition rate constants of A(1,2,4)¢
when compared to A(3)* (see Table 2 in the main text). In case of Pls 1 and 2, the main
product radical formed at the highest rate in solution polymerization is the B-OOe peroxyl

radical instead of the A-BAe addition radical.
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Figure S14. Simulation of the initiation reaction for compound 1 in air-saturated butyl acrylate
(320 nm low power LED, /, = 2 x 10 mol L' s, concentrations: 2 mM 1, 2 mM O,): a)
concentration versus time plot for bulk polymerization (7 M butyl acrylate, M); b)
concentration versus time plot for solution polymerization (1 M butyl acrylate, M).
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Figure S15. Simulation of the initiation reaction for compound 2 in air-saturated butyl acrylate
(385 nm low power LED, /, = 2 x 10 mol L' s, concentrations: 2 mM 2, 2 mM O,): a)
concentration versus time plot for bulk polymerization (7 M butyl acrylate, M); b)
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Figure S16. Simulation of the first initiation reaction for compound 4 in air-saturated butyl
acrylate (385 nm low power LED, I, = 2 x 10-® mol L-' s-', concentrations: 2 mM 4, 2 mM O,):
a) concentration versus time plot for bulk polymerization (7 M butyl acrylate, M); b)
concentration versus time plot for solution polymerization (1 M butyl acrylate, M).
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5. Detailed Kinetic Model

Table S1 summarizes the reactions considered in our model, together with the kinetic rate
laws.

Table S1. Reactions included in the model and the corresponding rate laws (R: reaction

rates, k: rate constants, @: quantum yield, /o: spectral photon flux, &: extinction coefficient).

Equation Rate Law
Radical Generation P —hq;’.. Ae+Be Ri=gqy -pf-(1—10"eCIPlldy
K
Monomer Addition A+ +M—2» Apm. Raaa = kaaa [A *][M]
Be + M—29% » BMs Raaa = kaaq [B ][M]
k
0, Quenching As+ 0, —=—= AOO*  Rox = koy [A][02]
k
B + 0y —2—> BOO-  Rox = kox [B +][0;]
k
Recombination A-+B — AB R, =k, [A*][B *]
k
A+ Ar ——> AA Ry =k, [A*][A ]
K
B+ +B- —— B-B Ry =k, [B +][B ]
k
Termination As+ AMe ——= A-M-A R, =k, [A+]|[AM o]
k
Av+BM: ——— > A-M-B R, =k, [A*][BM ]
K
Be+ AMs —— = B-M-A R, =k, [B *][AM ]

Be + BM» ——» B-M-B  R; =k [B *][BM «]

Figures S17-S20 show screenshots of our simulation program designed with the public-
domain software COPASI (see reference 37 in the main text).
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Figure S17. Screenshot of the reactions considered in the simulation program (BA: butyl
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Figure S18. Screenshot of the parameters defined for the radical generation reaction with

compound 3 (qy: quantum yield, pf: spectral photon flux (/y), ext: extinction coefficient).
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Figure S19. Screen shot of “global quantities” programmed into the model, including
quantum vyields (QY), extinction coefficients (E), addition rate constants (k) and light
intensities (10), BA: butyl acrylate.
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Figure S20. Screenshot of the differential equations solved by the program.



6. Simulations Considering Standard Deviations of Experimental
Data

Figures S21-S23 display simulations of the initiation reaction of photoinitiator 3 in presence
of oxygen, taking into account standard errors of the experimental values for quantum yields
(Figure S21), extinction coefficients (Figure S22) and rate constants (Figure S23). The
simulations have been performed assuming deviations in the experimental values of plus or
minus 20 %.

Variations of the quantum yield and extinction coefficient influence the radical generation rate
and thus the time scale of the initiation process. An increase of the quantum yield or
extinction coefficient leads faster initiation, while a decrease has the opposite effect (see
Figures S21 and S22). On the other hand, variations of the monomer addition rate constants
influence the concentration ratio of addition radicals (A(3)-Me and B(3)-Me) to peroxyl radicals
(A(3)-00- and B(3)-0O0e, see Figure S23). This effect is particularly visible in case of the
benzoyl radical B(3)e. Increasing the monomer addition rate constant by 20% leads to a
higher amount of the addition radical B(3)-Me, while reducing the formation of the peroxyl

radical B(3)-OO0e (see the main text for further discussions).

204 t20% o —zccsm——
\ =T TAB) M
\ 0 - o T20%
% 1.5+ \\\\2 / I,’ T20%
= Ny B(3)-00-
c \ >£,’ =T - 20%
£ 101 NI
o do :
= /// \\\\ - .2‘0-;4,
@ il s N T s ndod P
Susl L 0 s
. 7/ 0, - T -] L]
38 / tz,ué’:, X0 T ok BN
4 = = ~ =
’1’4’ i -“___ A3-00'
#Z - 20% +20% =~ TTo—— T £._) ______
0.0 : T : T ! T ! — o
0 100 200 300 400 500 600
time /s

Figure S21. Simulation of the initiation reaction (radical generation followed by monomer
addition) for compound 3 in bulk butyl acrylate at 385 nm (/, = 2x10-% mol L-'s™"). Solid lines
correspond to the following parameters: @ = 0.83, €355 = 255 L mol"' cm!, K,qg,a3) = 2.6 X
108 L mol' s, Kaga,ez» = 2.7 X 10° L mol' s-'. The dashed lines show the outcome of the
simulations for variations of the experimental quantum yield @ of plus or minus 20 % (while
leaving €3gs, Kada,a3- aNd Kadq,8(3- Unchanged).
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Figure S22. Simulation of the initiation reaction (radical generation followed by monomer
addition) for compound 3 in bulk butyl acrylate at 385 nm (/, = 2x10-5> mol L-'s™"). Solid lines
correspond to the following parameters: @ = 0.83, €355 = 255 L mol"' cm™, Kagg,az)e = 2.6 X
108 L mol' s, Kagae@)e = 2.7 x 105 L mol' s”'. The dashed lines show the outcome of the
simulations for variations of the experimental extinction coefficient of plus or minus 20 %
(while leaving @, Kaqq,a3)- and Kaqa,g(3- unchanged).
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Figure S23. Simulation of the initiation reaction (radical generation followed by monomer
addition) for compound 3 in bulk butyl acrylate at 385 nm (/, = 2x10-® mol L-'s™"). Solid lines
correspond to the following parameters: @ = 0.83, €355 = 255 L mol"' cm™, Kagg,a@): = 2.6 X
108 L mol' s, Kagaez) = 2.7 x 10° L mol' s-'. The dashed lines show the outcome of the
simulations for variations of the experimental monomer addition rate constants of plus or
minus 20 % (while leaving @ and &€3g5 unchanged).
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