Supporting Information

Improvement and tuning of the performance of light-healable polymers by variation of the monomer content

T. Hughes^a, G. P. Simon^b and K. Saito^a

^a School of Chemistry, Monash University, Clayton, VIC 3800, Australia

^b Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia

Corresponding authors: kei.saito@monash.edu, george.simon@monash.edu

Figure S1: ¹H NMR of the epoxy monomer PDE (top) and the soluble polymer chains from the solubility test (bottom) of APCD/PDE, both in d⁶-DMSO.

Figure S2: OM images of an 18 μ m scratch on the surface (middle) of APCD/PDE and the cross-section of the sample observed from the left side (left) and the right-side (right) showing a uniform scratch depth of ca. 195 μ m.

Figure S3: OM images of the unsuccessful healing attempt of a 14 μ m scratch on the surface of polymer APCD/BDE before (left) and after (right) irradiation.

Figure S4: OM images of the elevated temperature healing of a 12 μ m scratch on the surface of polymer APCD/PDE before (left) and after (right) irradiation.

Figure S5: OM images of the elevated temperature healing of an 11 μ m scratch on the surface of polymer APCD/BP50 before (left) and after (right) irradiation.

Figure S6: Powder x-ray diffraction pattern of the crosslinked polymer APCD/PDE showing an amorphous structure. The sample was analysed on a Bruker D8 Advance Eco diffractometer using a Cu K_{α} radiation source between 20 angles of 5° – 50°.