Influence of Amide-Containing Side Chains on the Mechanical Properties of Diketopyrrolopyrrole-based Polymers

Michael U. Ocheje,^a Mariia Selivanova,^a Song Zhang,^b Thi Hai Van Nguyen,^a, Brynn P. Charron,^a Ching-Heng Chuang,^c Yu-Hsuan Cheng,^c Blandine Billet,^a Suendues Noori,^a Yu-Cheng Chiu,^c Xiaodan Gu^{b,*} and Simon Rondeau-Gagné^{a,*}

^a Department of Chemistry and Biochemistry, University of Windsor, Ontario, Canada, N9B 3P4

^b School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive, # 5050 Hattiesburg, Mississippi, United States, MS 39406

^c Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan

Table of Contents

-	Materials	1
-	Materials Characterization	2
-	References	26

Materials

Conjugated polymers **P1** to **P7**, incorporating various ratios of amide-containing alkyl chains or dodecyl alkyl chains, have been prepared following previously reported procedures.^{1,2} Commercial reactants were used without further purification unless stated otherwise. All the solvents used in these reactions were distilled prior to use. Tris(dibenzylideneacetone)dipalladium(0)-chloroform adduct (Pd₂(dba)₃•CHCl₃) was purchased from Sigma Aldrich and recrystallized following a reported procedure.³ (*E*)-1,2-bis(5-(trimethylstannyl)thiophen-2-yl)ethene (TVT) and 3,6-bis(5-bromothiophen-2-yl)-2,5-bis(2-decyltetradecyl)-2,5-dihydropyrrolo[3,4-*c*]pyrrole-1,4-dione were synthesized according to literature.⁴

Materials Characterization

Figure S1. a) Variable Temperature (VT) NMR spectra of polymer P4, containing 20 mol% of amide-containing alkyl chains, in 1,1,2,2-tetrachloroethene- d_2 ; b) VT-NMR spectra of P4 in 1,1,2,2-tetrachloroethene- d_2 zoomed on the amide region.

Figure S2. FTIR spectra of **P1** to **P4** in thin films, zoomed on the NH stretching region.

Figure S3. Optical microscopy images of P1 to P4 stretched at $\varepsilon = 50$ and 100%. Images of P1 have been recorded on dark field for clarity. Scale bar is 20 μ m

Figure S4. Optical microscopy images of **P5** to **P7** stretched at $\epsilon = 50$ and 100%. Scale bar is 20 μ m

Figure S5. Crack-onset strain for polymer **P1** to **P4**, incorporating 0 to 20 mol% of amidecontaining alkyl chains, as measured by soft-contact lamination on PDMS and SiO₂.

Figure S6. Atomic force microscopy (AFM) height profiles of P1 to P4 at 50% strain. Scale bar

is 2 $\mu m.$

Figure S7. Polarized UV-vis spectra of **P1** stretched at different strains, with the polarization direction of light parallel (0°, black curve) and perpendicular (90°, red curve) to the stretching direction.

Figure S8. Dichroic ratios measured for **P1** at various strain. The dichroic ratio is defined as $\alpha_{//}$ / α_{\perp} .

Figure S9. Polarized UV-vis spectra of **P3** stretched at different strains, with the polarization direction of light parallel (0°, black curve) and perpendicular (90°, red curve) to the stretching direction.

Figure S10. Dichroic ratios measured for P3 at various strain. The dichroic ratio is defined as $\alpha_{//} / \alpha_{\perp}$.

Figure S11. Polarized UV-vis spectra of **P6** stretched at different strains, with the polarization direction of light parallel (0°, black curve) and perpendicular (90°, red curve) to the stretching direction.

Figure S12. Dichroic ratios measured for P6 at various strain. The dichroic ratio is defined as $\alpha_{//} / \alpha_{\perp}$.

Figure S13. Stress vs strain curves for polymer **P1** to **P4**, as measured by Film-on-Water (FOW) Tensile Pull Test. Strain rate of 2 x 10^{-4} /s, averaged on 5 samples. Sample thickness of 50 nm.

Figure S14. Stress vs strain curves for polymer **P5** to **P7**, incorporating 5 to 20 mol% of linear dodecyl side chains, as measured by Film-on-Water (FOW) Tensile Pull Test. Strain rate of 2 x 10^{-4} /s, averaged on 5 samples. Sample thickness of 50 nm.

Figure S15. Elastic modulus of **P1** to **P4**, determined by nanoindentation with AFM. Film thicknesses ranged from 40-60 nm, as determined by AFM.

Figure S16. Grazing incidence XRD patterns of P1 to P4 spin-cast on OTS-treated SiO₂ substrate.

Figure S17. Grazing-incidence X-ray diffraction of a) P1 to P4, and b) P1 and P5 to P7.

Figure S18. Grazing-incidence X-ray diffraction of stretched films of **P1** to **P4** at 50% and 100% strain elongation.

Figure S19. Grazing-incidence X-ray diffraction of stretched films of **P1** and **P5** to **P7** at 50% and 100% strain elongation.

Figure S20. Grazing incidence XRD patterns of **P1** to **P4** spin-cast on SiO₂ substrate, at 50% and 100% strain elongation.

Figure S21. Grazing incidence XRD patterns of **P5** to **P7** spin-cast on SiO₂ substrate, at 50% and 100% strain elongation.

Figure S22. Grazing-incident X-Ray diffraction (GIXD) of **P3** from 0 to 60% strain, measured a) out of plane and b) in plane.

Figure S23. Grazing incidence XRD patterns of **P3** spin-cast on SiO_2 substrate, from 0 to 60% strain elongation.

Sample	q (Å ⁻¹)	d spacing (nm)
P3 ($\varepsilon = 0\%$)	0.264	2.380
P3 ($\varepsilon = 20\%$)	0.265	2.371
P3 ($\varepsilon = 40\%$)	0.258	2.435
P3 ($\varepsilon = 60\%$)	0.261	2.407

Table S1. GIXD results for P3 from 0 to 60% strain elongation

Table S2. Previously reported average and maximum hole mobility (μ_h^{ave} , μ_h^{max}), threshold voltages (V_{th}), I_{on}/I_{off} , and ratios for OFETs fabricated from **P1** to **P4** before and after thermal annealing.¹ The device performances were averaged from 20 devices, from four different batches. ^a Evaluated by AFM.

Polymer	Annealing Temperature [°C]	Thickness (nm)ª	W/L	$\mu_{h}^{ave} / \mu_{h}^{max}$ [cm ² V ⁻¹ s ⁻¹]	$I_{\rm ON}/I_{\rm OFF}^{\rm ave}$	V _{th} [V]
P1 (0 mol%)	170	40-50	20	1.52±0.25/1.91	10 ⁵	-4.32
P2 (5 mol%)	170	40-50	20	2.02±0.35/2.46	10^{6}	-5.50
P3 (10 mol%)	170	40-50	20	0.46±0.16/0.67	10^{6}	-4.75
P4 (20 mol%)	170	40-50	20	0.74±0.17/1.06	10 ⁵	-5.93

Figure S24. Transfer curves of FET devices from a) **P3** at 50% strain elongation, b) **P3** at 100% strain elongation, c) **P6** at 50% strain elongation, and d) **P6** at 100% strain elongation. All devices were fabricated on SiO₂ from laminated stretched polymer film, without annealing treatment. Drain voltage = -60V

Stretching direction

Figure S25. Optical microscope images of a) damaged thin films of **P1** to **P4** (100% strain applied and released before transfer on SiO₂) and b) Thin films of **P1** to **P4** after exposure to solvent vapour (chlorobenzene) and thermal annealing for 30 minutes. Scale bar, for all images, is 20 μ m

Figure S26. a) Optical microscope images of a) damaged thin films of **P6**, containing 10 mol% of dodecyl side-chains (100% strain applied and released before transfer on SiO₂); b) Optical microscope images of damaged thin films of **P6**, containing 10 mol% of dodecyl side-chains in dark field (100% strain applied and released before transfer on SiO₂); c) Optical microscope images of thin films of **P6** after exposure to solvent vapour (chlorobenzene) and thermal annealing for 30 minutes and d) optical microscope images of thin films of **P6** in dark field after exposure to solvent vapour (chlorobenzene) and thermal annealing for 30 minutes. Scale bar, for all images, is $20 \,\mu\text{m}$

Figure S27. Height images and profiles, determined by AFM, of a) Thin films of **P3** after exposure to solvent vapour (chlorobenzene, 10 min. at 40°C) and thermal annealing (30 min. at 150°C), and b) Thin films of **P4** after exposure to solvent vapour (chlorobenzene, 10 min. at 40°C) and thermal annealing (30 min. at 150°C). Scale bar is 2 μ m.

References

- M. U. Ocheje, B. P. Charron, Y.-H. Cheng, C.-H. Chuang, A. Soldera, Y.-C. Chiu and S. Rondeau-Gagné, *Macromolecules*, 2018, **51**, 1336–1344.
- J. Yao, C. Yu, Z. Liu, H. Luo, Y. Yang, G. Zhang and D. Zhang, *J. Am. Chem. Soc.*, 2016, 138, 173–185.
- 3 S. S. Zalesskiy and V. P. Ananikov, *Organometallics*, 2012, **31**, 2302–2309.
- 4 H. Yu, K. H. Park, I. Song, M.-J. Kim, Y.-H. Kim and J. H. Oh, J. Mater. Chem. C, 2015,

, 11697–11704.