Supporting Information

Addressing the role of triphenylphosphine in copper catalyzed ATRP

João R. C. Costa^{1,§}, Joana R. Góis^{1,§}, Francesco De Bon², Arménio C. Serra¹, Tamaz Guliashvili¹, Abdirisak A. Isse², Armando Gennaro², Jorge F. J. Coelho^{1*}

¹ Centre for Mechanical Engineering Materials and Processes (CEMMPRE), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal ² Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy *§*: Both authors contributed equally to this work.

Figure S1: SEC traces with conversion for the SARA ATRP of MA mediated by PPh₃ in DMSO/H₂O = 90/10 (v/v) at 50 °C. Reaction conditions: $[MA]_0/[solvent] = 2/1 (v/v); [MA]_0/[EBiB]_0/[PPh_3]_0/ [Cu^{II}Br_2]_0/ [Me_6TREN]_0 = 222/1/1/0.1/1.1.$

entry	solvent	initiator	<i>Т</i> (°С)	[PPh ₃] ₀ /[Cu ^{II} Br ₂] ₀ /[Me ₆ TREN] ₀	time (h)	conv (%)	k _p ^{app} (h ⁻¹)	$M_{\rm n}^{\rm th} \times 10^{-3}$	$M_{\rm n}^{\rm SEC}$ × 10 ⁻³	Ð
1	Acetonitrile	EBiB	30	1/0.1/1.1	24	10		1.90	2.10	1.16
2	DMF	EBiB	50	1/0.1/1.1	24	30		5.7	6.9	1.05
3	Ethanol	EBiB	50	1/0.1/1.1	9	96		18.6	23.4	1.28
4	DMSO/H ₂ O	EBiB	50	1/0.1/1.1	4.5	91	0.761	16.4	16.96	1.06
5	DMSO/H ₂ O	EBPA	50	1/0.1/1.1	15	82		14.8	38.8	1.08
6	DMSO/H ₂ O	EBiB	50	1/0.1/0.2	24	90		15.78	16.75	1.07
7	DMSO/H ₂ O	EBPA	50	1/0.1/0.2	24	76		14.5	21.62	1.02

Table S1: SARA ATRP of MA mediated by PPh3 in DMSO (or DMSO/H2O = 90/10 (v/v)), using different $[PPh_3]_0/[CuBr_2]_0/[Me_6TREN]_0$ ratios ^a.

 $\overline{a \text{ Conditions: [MA]}_0/[\text{solvent}] = 2/1 \text{ (v/v); [initiator]}_0/[\text{MA}]_0 = 1/210.}$

Figure S2: Cyclic voltammetry of $[BrCu^{II}Me_6TREN]^+$ in DMSO + 0.1 M Et₄NBF₄ at 50 °C, recorded on GC electrode at 0.2 V/s: (a) 1.0 mM $[BrCu^{II}Me_6TREN]^+$; (b) as (a) + 1 mM PPh₃; (c) as (b) + 10 mM Et₄NBr; (d) as (b) + 100 mM Et₄NBr.

Table S2: SEC parameters over time, determined by multidetector calibration, for the SARA ATRP of MAmediated by PPh3 in DMSO/H2O = 90/10 (v/v) at 50 °C. Reaction conditions: $[MA]_0/[solvent] = 2/1 (v/v);$ $[MA]_0/[EBiB]_0/[PPh_3]_0/ [Cu^{II}Br_2]_0/ [Me_6TREN]_0 = 210/1/1/0.1/1.1.$

	Reaction in the prese	nce of light	Reaction in the dark		
Time (h)	<i>M</i> _n ^{SEC} x 10 ⁻³	Đ	$M_{\rm n}^{\rm SEC}$ x 10 ⁻³	Ð	
1.50	2.66 <i>a</i>	1.03 <i>a</i>	2.50 <i>a</i>	1.11 a	
2.00	6.01	1.08	5.28	1.11	
2.50	10.03	1.05	9.04	1.06	
3.00	13.64	1.05	12.47	1.04	
3.50	17.07	1.09	15.43	1.10	
4.00	19.78	1.08	19.27	1.10	

^a determined by universal calibration.

Figure S3: UV-Vis spectra of Cu^{II}Br₂/Me₆TREN in a MeOAc/DMSO/H₂O = 2/0.9/0.1 (v/v/v) mixture at 50 °C in the absence and in the presence of PPh₃. Conditions: [CuBr₂]₀/[Me₆TREN]₀/[PPh₃]₀ = 0.1/0.2/0 (molar ratio), [Cu^{II}Br₂]₀ = 3.35 m (left); and [CuBr₂]₀/[Me₆TREN]₀/[PPh₃]₀ = 0.1/0.2/1 (molar ratio), [Cu^{II}Br₂]₀ = 3.35 m (right).

Figure S4: MALDI-TOF-MS in the linear mode (using HABA as matrix) a) from m/z 1600 to 3500 and b) enlargement of the spectrum from m/z 2150 to 3600 of PMA-Br ($M_n^{\text{SEC}} = 2.5 \times 10^3$; D = 1.02).

n	$\mathbf{MW_{th}}^{a}$	MW _{exp} (Figure S3)
23	2198	2199
24	2284	2285
25	2371	2371
26	2457	2457
27	2543	2544
a M M	$-\mathbf{M}(\mathbf{E}\mathbf{D};\mathbf{D}) + \cdots + \mathbf{M}(\mathbf{M}\mathbf{A}) + \mathbf{M}(\mathbf{M}\mathbf{z}_{+})$	

 Table S3: MALDI-TOF MS peaks assignment.