Supporting Information

Polymerization of Long Chain Alkyl Glycidyl Ethers:

A Platform for Micellar Gels with Tailor-Made Melting Points

Patrick Verkoyen¹, Tobias Johann^{1,2}, Jan Blankenburg^{1,3}, Christian Czysch¹, Holger Frey^{*1}

¹Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany ²Max Planck Graduate Center, Forum Universitatis 2, D-55122 Mainz, Germany ³Graduate School Materials Science in Mainz, Staudinger Weg 9, D-55128 Mainz, Germany

Figure S1. Image of the custom-made press with PEEK and Teflon inlays (left) for polymer processing to hydrogel samples.

Figure S2. ¹H NMR spectrum (300 MHz, chloroform-d) of dodecyl allyl ether.

Figure S3. ¹H NMR spectrum (300 MHz, chloroform-d) of dodecyl glycidyl ether.

Figure S4. ¹H NMR spectrum (300 MHz, chloroform-d) of BnO-PC12-AlkGE₁₉.

Figure S5. ¹H NMR spectrum (300 MHz, chloroform-d) of BnO-PC16-AlkGE₁₇.

Figure S6. ¹H NMR spectrum (300 MHz, chloroform-d) of BnO-PC16-AlkGE₂₉.

Figure S7. ¹H NMR spectrum (300 MHz, chloroform-d) of PC12₅-*b*-PEG₁₃₆-*b*-PC12₅.

Figure S8. Synthetic procedure for the preparation of long-chain alkyl glycidyl ethers. The synthetic sequence shown in **Figure S8** is a modified literature procedure.¹

Figure S9. GC-measurement of the synthesized dodecyl glycidyl ether.

Figure S10. ¹H NMR spectrum (300 MHz, chloroform-d) of BnO-PC12-AlkGE₁₇ before (2) and after (1) removal of crown ether (indicated by arrow) via work-up procedure.

Figure S11. MALDI-ToF measurement of BnO-PC12-AlkGE, using the purchased C_{12} -AlkGE. Impurities of C_{14} -AlkGE are indicated (left), and all peaks can be assigned (right).

Figure S12. MALDI-ToF measurement of BnO-PC12-AlkGE₁₇, using the synthesized C₁₂-AlkGE.

Figure S13. MALDI-ToF measurement of BnO-PC16-AlkGE₁₇, using the purified C₁₆-AlkGE.

Figure S14. GC-measurement of commercial C_{12} -AlkGE after purification (retention time: 16.6 min), showing C_{14} -AlkGE impurity (retention time: 18.7 min).

Figure S15. GC-measurement of purchased C₁₆-AlkGE after purification.

Figure S16. Images of hydrogel samples after swelling in water/ethanol mixture (50/50 wt%). From left: PC16₅-*b*-PEG₁₃₆-*b*-PC16₅, PC16₆-*b*-PEG₂₂₇-*b*-PC16₆, PC12₅-*b*-PEG₂₂₇-*b*-PC12₅, PC16₅-*b*-PEG₄₅₄-*b*-PC16₅, PC12₆-*b*-PEG₄₅₄-*b*-PC12₆.

Figure S17. SEC traces of the prepared triblock copolymers using C₁₂-AlkGE. (eluent: DMF, calibration: PEG standards)

Figure S18. SEC traces of the prepared triblock copolymers using C₁₆-AlkGE. (eluent: DMF, calibration: PEG standards).

Figures S17 and S18 show the SEC traces of the prepared ABA triblock copolymers. Some of the traces show a second mode in the range of the exact double molecular weight. Additionally, not all samples synthesized could be measured using DMF as an eluent, as it is detailed in the manuscript text. The appearance of additional signals in the range of the twofold molecular weight suggests an aggregation during the elution procedure. This can be explained by the low solubility of the samples in DMF. The measured molecular weights show good agreement with the targeted molecular weights when determined by ¹H NMR.

Figure S19. Linear fit of peak area of different Nile Red concentrations for calibration. (injection volume: $20 \ \mu$ L, eluent: hexane/chloroform, 20/80)

Using the respective fit equation, calculation of the Nile Red concentrations and amount of Nile Red incorporated in the entire gels is possible. Subsequently, the loading efficiencies can be calculated.

Peak area	(mg)
PEG ₂₂₇ 0.000081 400	-
PC12 ₃ - <i>b</i> -PEG ₁₃₆ - <i>b</i> -PC12 ₃ 0.000035542 48	466
PC12 ₅ - <i>b</i> -PEG ₁₃₆ - <i>b</i> -PC12 ₅ 0.000068988 54	303
PC12 ₅ - <i>b</i> -PEG ₂₂₇ - <i>b</i> -PC12 ₅ 0.00019961 33	512
PC12 ₈ - <i>b</i> -PEG ₂₂₇ - <i>b</i> -PC12 ₈ 0.0011 38	370
PC12 ₆ - <i>b</i> -PEG ₄₅₄ - <i>b</i> -PC12 ₆ 0.00040532 58	560
PC12 ₁₂ - <i>b</i> -PEG ₄₅₄ - <i>b</i> -PC12 ₁₂ 0.00067191 53	471
PC16 ₃ - <i>b</i> -PEG ₁₃₆ - <i>b</i> -PC16 ₃ 0.000097287 65	531
PC16 ₅ - <i>b</i> -PEG ₁₃₆ - <i>b</i> -PC16 ₅ 0.00032 64	224
PC16 ₆ - <i>b</i> -PEG ₂₂₇ - <i>b</i> -PC16 ₆ 0.000069695 48	335
PC16 ₉ - <i>b</i> -PEG ₂₂₇ - <i>b</i> -PC16 ₉ 0.000062748 39	280
PC16 ₅ - <i>b</i> -PEG ₄₅₄ - <i>b</i> -PC16 ₅ 0.00089667 48	580
PC16 ₁₄ - <i>b</i> -PEG ₄₅₄ - <i>b</i> -PC16 ₁₄ 0.00067191 42	340

Table S1. Concentration values of Nile Red in the prepared hydrogels calculated by linearregression using 0.5 mL of a THF/Nile Red solution (concentration = 0.1 g/L) as initial solvent.

Figure S20. Trend of the copolymer melting temperatures when copolymerizing different monomer ratios of C_{12} -AlkGE and C_{16} -AlkGE. Blue dots represent measured melting points, the red line is extrapolated.

Figure S21. DSC-measurements of triblock copolymers containing PC12-AlkGE-blocks (in bulk).

Figure S22. DSC-measurements of triblock copolymers containing PC16-AlkGE-blocks (in bulk).

Figure S23. DSC-measurements of the homopolymers BnO-PC12-AlkGE₁₇, BnO-PC16-AlkGE₁₇ and PEG₂₂₇ as a reference (in bulk).

Polymer sample	<i>T_mª /</i> °C in bull	k $\Delta H_m / J/g$
PC12 ₃ -b-PEG ₁₃₆ -b-PC12 ₃	0 / 53	6.4 / 111.4
PC12 ₅ - <i>b</i> -PEG ₁₃₆ - <i>b</i> -PC12 ₅	8 / 52	16.2 / 84.8
PC12 ₅ - <i>b</i> -PEG ₂₂₇ - <i>b</i> -PC12 ₅	2 / 57	9.5 / 113.2
PC12 ₈ -b-PEG ₂₂₇ -b-PC12 ₈	10 / 56	14.1 / 88.2
PC12 ₆ - <i>b</i> -PEG ₄₅₄ - <i>b</i> -PC12 ₆	0/61	3.1 / 113.2
PC12 ₁₂ - <i>b</i> -PEG ₄₅₄ - <i>b</i> -PC12 ₁	2 11/61	8.3 / 98.9
PC16 ₃ - <i>b</i> -PEG ₁₃₆ - <i>b</i> -PC16 ₃	33 / 52	10.6 / 100.9
PC16 ₅ - <i>b</i> -PEG ₁₃₆ - <i>b</i> -PC16 ₅	38 / 50	11.9 / 67.1
PC165- <i>b</i> -PEG227- <i>b</i> -PC165	37 / 52	14.8 / 91.5
PC169- <i>b</i> -PEG227- <i>b</i> -PC169	40 / 54	22.5 / 78.9
PC16 ₅ - <i>b</i> -PEG ₄₅₄ - <i>b</i> -PC16 ₅	34 / 62	7.7 / 113.9
PC16 ₁₄ - <i>b</i> -PEG ₄₅₄ - <i>b</i> -PC16 ₁	41/57	16.0 / 79.8

Table S2. Melting temperatures of the triblock copolymers in bulk.

^{*a*} First melting temperature can be assigned to the hydrophobic AlkGE-block, second melting temperature is due to the hydrophilic PEG-block.

Figure S24. DSC-measurements of triblock copolymers containing PC12-AlkGE blocks in ethanol/water gels (at equilibrium swelling).

Figure S25. DSC-measurements of triblock copolymers containing PC16-AlkGE in ethanol/water gels (equilibrium swelling).

Polymer sample	T _m / °C in water/ethanol gel	$\Delta H_{\rm m}$ / J/g
PC12 ₃ - <i>b</i> -PEG ₁₃₆ - <i>b</i> -PC12 ₃	-	-
PC12 ₅ - <i>b</i> -PEG ₁₃₆ - <i>b</i> -PC12 ₅	-5	0.5
PC12 ₅ - <i>b</i> -PEG ₂₂₇ - <i>b</i> -PC12 ₅	_ *	-
PC12 ₈ - <i>b</i> -PEG ₂₂₇ - <i>b</i> -PC12 ₈	8	0.9
PC12 ₆ - <i>b</i> -PEG ₄₅₄ - <i>b</i> -PC12 ₆	_ *	-
PC12 ₁₂ - <i>b</i> -PEG ₄₅₄ - <i>b</i> -PC12 ₁₂	9	0.3
PC16 ₃ - <i>b</i> -PEG ₁₃₆ - <i>b</i> -PC16 ₃	-	-
PC16 ₅ - <i>b</i> -PEG ₁₃₆ - <i>b</i> -PC16 ₅	23	2.8
PC16 ₅ - <i>b</i> -PEG ₂₂₇ - <i>b</i> -PC16 ₅	23	0.8
PC16 ₉ - <i>b</i> -PEG ₂₂₇ - <i>b</i> -PC16 ₉	-	-
PC16 ₅ - <i>b</i> -PEG ₄₅₄ - <i>b</i> -PC16 ₅	21	0.3
PC16 ₁₄ - <i>b</i> -PEG ₄₅₄ - <i>b</i> -PC16 ₁₄	-	-

Table S3. Melting temperatures of the triblock copolymers in water/ethanol gels.

Figure S26. DSC-measurements of triblock copolymers containing PC12-AlkGE swollen in pure water. A: PC12₃-*b*-PEG₁₃₆-*b*-PC12₃, B: PC12₅-*b*-PEG₁₃₆-*b*-PC12₅, C: PC12₆-*b*-PEG₂₂₇-*b*-PC12₆, D: PC12₈-*b*-PEG₂₂₇-*b*-PC12₈, E: PC12₆-*b*-PEG₄₅₄-*b*-PC12₆, F: PC12₁₂-*b*-PEG₄₅₄-*b*-PC12₁₂.

Figure S27. DSC-measurements of triblock copolymers containing PC16-AlkGE swollen in pure water. A: PC16₃-*b*-PEG₁₃₆-*b*-PC16₃, B: PC16₅-*b*-PEG₁₃₆-*b*-PC16₅, C: PC16₅-*b*-PEG₂₂₇-*b*-PC16₅, D: PC16₉-*b*-PEG₂₂₇-*b*-PC16₉, E: PC16₅-*b*-PEG₄₅₄-*b*-PC16₅, F: PC16₁₄-*b*-PEG₄₅₄-*b*-PC16₁₄.

Table S4. Melting temperatures of the tri	block copolymers in hydrogels	(no co-solvent present)
---	-------------------------------	-------------------------

Polymer sample	<i>T</i> _m / °C in pure	$\Delta H_{\rm m}$ / J/g
	water	
PC12 ₃ - <i>b</i> -PEG ₁₃₆ - <i>b</i> -PC12 ₃	-	-
PC12 ₅ - <i>b</i> -PEG ₁₃₆ - <i>b</i> -PC12 ₅	19	2.5
PC12 ₅ - <i>b</i> -PEG ₂₂₇ - <i>b</i> -PC12 ₅	18	0.9
PC12 ₈ - <i>b</i> -PEG ₂₂₇ - <i>b</i> -PC12 ₈	19	3.6
PC12 ₆ - <i>b</i> -PEG ₄₅₄ - <i>b</i> -PC12 ₆	17	0.5
PC12 ₁₂ - <i>b</i> -PEG ₄₅₄ - <i>b</i> -PC12 ₁₂	20	1.6
PC16 ₃ - <i>b</i> -PEG ₁₃₆ - <i>b</i> -PC16 ₃	43	0.6
PC16 ₅ - <i>b</i> -PEG ₁₃₆ - <i>b</i> -PC16 ₅	47	5.9
PC16 ₅ - <i>b</i> -PEG ₂₂₇ - <i>b</i> -PC16 ₅	47	2.9
PC16 ₉ - <i>b</i> -PEG ₂₂₇ - <i>b</i> -PC16 ₉	48	7.9
PC16 ₅ - <i>b</i> -PEG ₄₅₄ - <i>b</i> -PC16 ₅	49	0.9
PC16 ₁₄ - <i>b</i> -PEG ₄₅₄ - <i>b</i> -PC16 ₁₄	44	4.1

Figure S28. ¹H NMR spectrum (300 MHz, D_2O) of D_2O after the extraction of a loaded hydrogel sample to verify that there are no remainders of THF in the hydrogel after dialysis.

Figure S29. DMA analysis of the ethanol/water gels. A: $PC16_5-b-PEG_{136}-b-PC16_5$ (o), $PC16_5-b-PEG_{227}-b-PC16_5$ (a), $PC16_5-b-PEG_{454}-b-PC16_5$ (o), G', filled symbols; G'', open symbols. B: $PC12_5-b-PEG_{136}-b-PC12_5$ (o), $PC12_6-b-PEG_{227}-b-PC12_6$ (a), $PC12_6-b-PEG_{454}-b-PC12_6$ (o), G', filled symbols; G'', open symbols. C: loss factor tan δ as function of the temperature calculated from the data in A of $PC16_5-b-PEG_{136}-b-PC16_5$ (o), $PC16_5-b-PEG_{227}-b-PC16_5$ (a), $PC16_5-b-PEG_{454}-b-PC16_5$ (o). D: loss factor tan δ as function of the temperature calculated from the data in B of $PC12_5-b-PEG_{136}-b-PEG_{136}-b-PC12_5$ (o), $PC12_6-b-PEG_{454}-b-PC12_6$ (o).

Figure S30. Amplitude sweep measurements of the ethanol/water gels containing PC12-AlkGE as a hydrophobic block and PEG (6k, 10k, 20k g mol⁻¹) as the central block at 5 °C.

Figure S31. Frequency sweep measurements of the ethanol/water gels containing PC12-AlkGE as hydrophobic block and PEG (6k, 10k, 20k g mol⁻¹) as middle block at 5 °C.

Figure S32. Amplitude sweep measurements of the ethanol/water gels containing PC16-AlkGE as hydrophobic block and PEG (6k, 10k, 20k g mol⁻¹) as middle block at 10 °C.

Figure S33. Frequency sweep measurements of the ethanol/water gels containing PC16-AlkGE as hydrophobic block and PEG (6k, 10k, 20k g mol⁻¹) as middle block at 10 °C.

References

a) S.-Y. Wu, A. Hirashima, R. Takeya and M. Eto, *Agricol. Biol. Chem.*, 1988, 52, 2911–2917;
b) L. F. Tietze and T. Eicher, *Reaktionen und Synthesen im organisch-chemischen Praktikum und Forschungslaboratorium*, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 1991;