Supplementary Information

Synthesis of Peptide-Vinyl Polymer Multiblock Hybrids by Nitroxide-mediated Polymerization: Breaking the Limitations of Monomer Compatibility

Shin-nosuke Nishimura, Nobuyuki Higashi* and Tomoyuki Koga*
Department of Molecular Chemistry \& Biochemistry, Faculaty of Science \& Engineering, Doshisha University,
Kyotanabe, Kyoto 610-0321, Japan
Table of Contents
Experimental Procedures (materials, measurements, synthesis and characterization). 2
Figures
S1. ${ }^{1} \mathrm{H}$ NMR spectrum of N-Fmoc- N '-Boc-EDA 10
S2. ${ }^{1} \mathrm{H}$ NMR spectrum of $N-F m o c-N$ ' $\mathrm{Boc}-E D A \cdot \mathrm{HCl}(1)$ 11
S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Fmoc}-E D A-\operatorname{Br}(2)$ 12
S4. ${ }^{1} \mathrm{H}$ NMR spectrum of N-tert-butyl- α-isopropylnitrone (3) 13
S5. ${ }^{1} \mathrm{H}$ NMR spectrum of tert-butyl 4-iodobenzoate (4) 14
S6. DART MS and ESR spectra of TIPNO-cootBu, free radical (5) 15
S7. ${ }^{1} \mathrm{H}$ NMR spectrum of Fmoc-NH-TIPNO-cootBu (6) 16
S8. ${ }^{1} \mathrm{H}$ NMR spectrum of Fmoc-NH-TIPNO-COOH (7) 17
S9. LCST behavior of multiblock copolymer P5 18
S10. Transmittance-FTIR spectra of P2 and fragmented P2 19
S11. Characterization of multiblock copolymer P1 20
S12. Characterization of multiblock copolymer P3 21
S13. Characterization of multiblock copolymer P4 22
S14. Characterization of multiblock copolymer P5 23
S15. Characterization of multiblock copolymer P6 24
S16. Characterization of multiblock copolymer P7 25
S17. Transmission-FTIR spectra and ${ }^{1} \mathrm{H}$ NMR of $\mathbf{P 7}$ after treating with TFA. 26
S18. Characterization of multiblock copolymer P8 27
S19. Characterization of multiblock copolymer P9 28
S20. Characterization of multiblock copolymer P10 29
S21. ${ }^{1} \mathrm{H}$ NMR spectrum of N -acryloylalanine-O-methyl ester 30

Experimental Procedures

Materials

Solvents of analytical grade were used unless otherwise stated. N, N-Dimethlylformamide (DMF), N-methyl-2pyrrolidone, methanol, trifluoroacetic acid (TFA), tetrahydrofuran (THF), dichloromethane, diethyl ether, hexane, cyclohexane, ethyl acetate, triethylamine (TEA), piperidine, styrene (St), N-isopropylacrylamide (NIPAM), acryloylchloride, 2-bromo-2-methylpropanoyl bromide, sodium hydroxide (NaOH), 12 M -hydrochloric acid, 25%-ammonia water, copper(II) acetate $\left(\mathrm{Cu}(\mathrm{OAc})_{2}\right)$, hydroquinone, $2,2^{\prime}$-azobisisobutylonitrile (AIBN), sodium sulfate anhydrous (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), magnesium sulfate anhydrous (anhydrous MgSO_{4}), DMSO- d_{6}, acetone- d_{6} and chloroform- d were purchased from Nacalai Tesque. DMF was used after purification with distillation. Tetrakis(triphenylphosphine)palladium(0), phenylsilane, triisopropylsilane (TIS), N-Boc-ethylenediamine (N-Boc- $E D A$), copper(II) trifluoromethanesulfonate ($\mathrm{Cu}(\mathrm{OTf})_{2}$), 2-methyl-2-nitropropane, isobutylaldehyde, ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$, 4-iodobenzoic acid, potassium tert-butoxide, chloroform and acrylonitrile (AN) were purchased from Tokyo Chemical Industry. $\mathrm{LiBr}, \mathrm{Cu}(0)$ powder ($99.9 \%, \phi=75 \mu \mathrm{~m}$), zinc powder ($99.9 \%, \phi=75-150 \mu \mathrm{~m}$), thionyl chloride, N, N '-diisopropyl carbodiimide (DIPC), super dehydrated THF, stabilizer free $\left(\mathrm{THF}_{\mathrm{SD}}\right), 1 \mathrm{M}-i \mathrm{PrMgBr}$ THF solution, ethyl acrylate (EA), tert-butyl acrylate ($t \mathrm{BuA}$), ethylenediaminetetraacetic acid disodium dihydrate (EDTA) and N-(9-fluorenylmethoxycarbonyloxy)succinimide (Fmoc-OSu) were purchased from Wako Pure Chemical. Fmoc-L-Leu, Fmoc-L-Asp- β-allyl ester (Fmoc-L-Asp(OAll)), Fmoc-NH-SAL MBHA resin (resin loading $0.67 \mathrm{mmol} / \mathrm{g}$), 1-hydroxybenzotriazole anhydrous (HOBt) and H -Ala-OMe hydrochloride were purchased from Watanabe Chemical Industries. 2,5-Dihydroxybenzoic acid (DHBA), 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane ($\mathrm{Me}_{4} \mathrm{Cyclam}$) and 2,2,5-trimethyl-4-phenyl-3-azahexane-3-nitroxide, free radical (TIPNO) were purchased from Sigma Aldrich. Fmoc-8-amino-3,6-dioxaoctanoic acid (Fmoc-deg-COOH) was purchased from Combi-Blocks. St, NIPAM, EA and $t \mathrm{BuA}$ were purified by being passed through activated alumina prior to use. AN was distilled in the presence of hydroquinone to remove inhibitors prior to use. The others were used as received.

Measurements

${ }^{1}$ H NMR spectra were acquired using a JEOL JNM-ECA500 (JEOL Resonance) spectrometer (500 MHz). ESR spectrum was obtained using a JEOL JET-TE200 spectrometer in CHCl_{3} at $-196^{\circ} \mathrm{C}$. The values of M_{n} and $Đ\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)$ of the block copolymers were determined by size exclusion chromatography (SEC) on a JASCO LC-net II/AD (JASCO Ltd.) equipped with a refractive index (RI) detector. Block copolymers P1-P8, P10 were analyzed in THF (flow rate: $1 \mathrm{~mL} / \mathrm{min}$, temperature: $40{ }^{\circ} \mathrm{C}$, column: GF-710F), and P9 was analysed in DMF (containing 10 mM LiBr) (flow rate: $0.6 \mathrm{~mL} / \mathrm{min}$, temperature: $40{ }^{\circ} \mathrm{C}$, column: TSKgel $\alpha-4000$). Polystyrenes and poly(methyl methacrylate)s were purchased from GL Sciences Inc. and used as the calibration standards. Direct analysis in real-time MS (DART MS) analysis was carried out on a DART-SVP (Ionsense Inc.). Matrix-assisted laser desorption ionization-time-of-flight MS (MALDI-TOF MS) analyses were carried out on an Autoflex speed (Bluker Daltonics) using DHBA as a matrix. Transmission-FTIR spectra were measured with a FT/IR-4600 (JASCO Ltd.) using a deuterated L-alanine triglycine sulphate (DLATGS) detector (resolution: $4 \mathrm{~cm}^{-1}$, number of scan: 8). CD spectra were recorded on a J-820 spectropolarimeter (JASCO Ltd.) under N_{2} atmosphere. Experiments were performed in a quartz cell with a 1 mm path length over the range of $190-250 \mathrm{~nm}$ at $25^{\circ} \mathrm{C}$ (sample concentration: $0.01 \mathrm{wt} \%$).

Synthesis of (9H-fluoren-9-yl)methyl tert-butyl ethane-1,2-diyldicarbamate

(N-Fmoc- N^{\prime}-Boc-EDA)

N-Boc-EDA $10.0 \mathrm{~g}(62.4 \mathrm{mmol})$, Fmoc-OSu $23.16 \mathrm{~g}(68.4 \mathrm{mmol})$ and TEA $9.56 \mathrm{~mL}(68.4 \mathrm{mmol})$ were dissolved in 500 mL chloroform and stirred for 24 h at room temperature. The reaction mixture was washed three times with $0.1 \mathrm{M} \mathrm{HCl}_{\mathrm{aq}}$ $(100 \mathrm{~mL}), 0.1 \mathrm{M} \mathrm{NaOH}_{\mathrm{aq}}(100 \mathrm{~mL})$ and distilled water $(100 \mathrm{~mL})$, respectively. The organic layer was collected and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was concentrated in vacuo to give a crude. The crude was washed with cyclohexane/methanol $(\mathrm{v} / \mathrm{v}=4 / 1)(100 \mathrm{~mL})$ and dried to give pure $N-F m o c-N^{\prime}$-Boc-EDA as a white-colored solid.
Yield: 18.95 g (79.4 \%)
${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}, TMS) (Figure S1): $1.46 \mathrm{ppm}\left(-\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 3.25 \mathrm{ppm}\left(-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}-, 4 \mathrm{H}\right), 4.25 \mathrm{ppm}(-$ $\left.\mathrm{OCH}_{2} \mathrm{CH}<, 1 \mathrm{H}\right), 4.38 \mathrm{ppm}\left(-\mathrm{OCH}_{2} \mathrm{CH}<, 2 \mathrm{H}\right), 7.35-7.90 \mathrm{ppm}\left(\mathrm{Fmoc}, 8 \mathrm{H}\right.$, aromatic ring; - $\left.\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}-, 2 \mathrm{H}\right)$.

Synthesis of 2-((($(9 H-$-fluoren-9-yl)methoxy)carbonyl)amino)ethan-1-aminium chloride ($\mathrm{N}-\mathrm{Fmoc}-\mathrm{EDA} \cdot \mathrm{HCI}$ (1))

N-Fmoc- N '-Boc-EDA 18. $95 \mathrm{~g}(49.5 \mathrm{mmol})$ was dissolved in $12 \mathrm{M} \mathrm{HCl}_{\mathrm{aq}} /$ methanol $(\mathrm{v} / \mathrm{v}=1 / 2)$ mixed solution (300 mL) and stirred for overnight at room temperature. The reaction solution was concentrated and filtrated. The residue was washed with acetone to give pure $N-\mathrm{Fmoc}-E D A \cdot \mathrm{HCl}(\mathbf{1})$ as a white-colored solid.
Yield: 13.63 g (86.3 \%)
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, TMS) (Figure S2): $2.83 \mathrm{ppm}\left(-\mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}, 2 \mathrm{H}\right), 3.26 \mathrm{ppm}\left(-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}, 2 \mathrm{H}\right), 4.29 \mathrm{ppm}(-$ $\left.\mathrm{OCH}_{2} \mathrm{CH}<, 1 \mathrm{H}\right), 4.38 \mathrm{ppm}\left(-\mathrm{OCH}_{2} \mathrm{CH}<, 2 \mathrm{H}\right), 7.37-8.06 \mathrm{ppm}\left(\mathrm{Fmoc}, 8 \mathrm{H}\right.$, aromatic ring; $-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{3}{ }^{+}, 1 \mathrm{H}$; $\left.\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{3}{ }^{+}, 3 \mathrm{H}\right)$.

Synthesis of (9 H -fluoren-9-yl)methyl (2-(2-bromo-2-methylpropanamido)ethyl)carbamate (Fmoc-EDA-Br (2))

Compound $113.63 \mathrm{~g}(42.7 \mathrm{mmol})$ and TEA $13.15 \mathrm{~mL}(94.0 \mathrm{mmol})$ were dissolved in 300 mL chloroform. 2-Bromo-2methylpropanoyl bromide $6.33 \mathrm{~mL}(51.2 \mathrm{mmol})$ was added to the 1 -solution and stirred for 6 h over an ice bath. The reaction mixture was concentrated in vacuo, and ethyl acetate (200 mL) was added. The solution was washed three times with $1 \mathrm{M} \mathrm{HCl}_{\mathrm{aq}}(100 \mathrm{~mL}), 1 \mathrm{M} \mathrm{NaOH}_{\mathrm{aq}}(100 \mathrm{~mL})$ and distilled water $(100 \mathrm{~mL})$, respectively. The organic layer was collected and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was concentrated to give pure $\mathrm{Fmoc}-E D A-\mathrm{Br}(\mathbf{2})$ as a white-colored solid.
Yield: $14.83 \mathrm{~g}(80.5 \%)$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, TMS) (Figure S3): $1.93 \mathrm{ppm}\left(-\mathrm{C}(=\mathrm{O}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Br}, 6 \mathrm{H}\right), 3.40 \mathrm{ppm}\left(-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}-, 4 \mathrm{H}\right), 4.22 \mathrm{ppm}(-$ $\left.\mathrm{OCH}_{2} \mathrm{CH}<, 1 \mathrm{H}\right), 4.41 \mathrm{ppm}\left(-\mathrm{OCH}_{2} \mathrm{CH}<, 2 \mathrm{H}\right), 7.08-7.80 \mathrm{ppm}\left(\mathrm{Fmoc}, 8 \mathrm{H}\right.$, aromatic ring; - $\left.\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}-, 2 \mathrm{H}\right)$.

Synthesis of \boldsymbol{N}-tert-butyl- α-isopropylnitrone (3)

2-Methyl-2-nitropropane $10 \mathrm{~g}(97.0 \mathrm{mmol})$, isobutylaldehyde $8.81 \mathrm{~mL}(97.0 \mathrm{mmol})$, and ammonium chloride 5.71 g $(106.8 \mathrm{mmol})$ were dissolved in 200 mL water and 100 mL diethyl ether over an ice bath. Then, zinc powder 25.37 g (388 mmol) was added to the solution in small portions over 1 h with stirring. After the addition, the reaction mixture was stirred for 12 h at room temperature. The reaction mixture was filtered through a sintered glass filter, and the residue was washed with methanol (100 mL). The organic solvent in the filtrate was removed in vacuo. The objective nitrone was extracted three times with dichloromethane (50 mL) from a water solution. The organic solution was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was concentrated in vacuo to give pure N-tert-butyl- α-isopropylnitrone (3) as a colorless liquid.
Yield: 10.05 g (72.3\%)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, TMS $)$ (Figure S4): $1.11 \mathrm{ppm}\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}\right), 1.48 \mathrm{ppm}\left(-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 3.16 \mathrm{ppm}\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H}\right), 6.61$ ppm $\left(-\mathrm{N}^{+}\left(-\mathrm{O}^{-}\right)=\mathrm{CH}-, 1 \mathrm{H}\right)$.

Synthesis of tert-butyl 4-iodobenzoate (4)

4-Iodobenzoic acid $25.0 \mathrm{~g}(100.8 \mathrm{mmol})$ and thionyl chloride $21.4 \mathrm{~mL}(302.4 \mathrm{mmol})$ were dissolved in ethyl acetate/toluene ($\mathrm{v} / \mathrm{v}=1 / 1$) mixed solution (40 mL) and reacted for 4 h under reflux condition. The excess thionyl chloride and solvent were removed from the reaction solution in vacuo to give 4-iodobenzoyl chloride as a pale yellow-colored solid. The resulting product was used in the next step without purification. The 4-iodobenzoyl chloride was dissolved in 50 mL THF. Potassium tert-butoxide $12.5 \mathrm{~g}(111.6 \mathrm{mmol})$ was dissolved in 350 mL THF and added dropwise to the THF solution of 4-iodobenzoyl chloride over an ice bath, and then the reaction mixture was stirred for 1 h . A cooled pure water (65 mL) was slowly added to the reaction solution to quench excess potassium tert-butoxide. The mixture was concentrated in vacuo, and a pure water $(200 \mathrm{~mL})$ was added. The crude product was extracted from the water solution with diethylether (200 mL). The organic solution was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a crude. The crude was passed through a silica gel column using hexane/diethylether mixture solution ($\mathrm{v} / \mathrm{v}=20 / 1$) as an eluent $\left(R_{f}=0.61\right)$. The obtained solution was concentrated to give pure tert-butyl 4-iodobenzoate (4) as a pale yellow-colored oil.
Yield: 19.7 g (64.1\%)
${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, TMS) (Figure S5): 1.58 ppm (tert-butyl, 9H), 7.70 and 7.84 ppm (phenyl, 4H).

Synthesis of 2,2,5-trimethyl-4-p-tert-butyl-benzoate-3-azahexane-3-nitroxide, free radical (TIPNO-COOtBu, free radical (5))

All glassware was well dried in a drying machine at $70^{\circ} \mathrm{C}$ prior to use. $\mathrm{THF}_{\text {SD }}(200 \mathrm{~mL})$ was added to a two-neck flask and cooled to $-30^{\circ} \mathrm{C}$ with stirring. Next, a $1 \mathrm{M}-i \mathrm{PrMgBr} \mathrm{THF}$ solution $76 \mathrm{~mL}(76.0 \mathrm{mmol} i \mathrm{PrMgBr})$ was added. Subsequently, $415.41 \mathrm{~g}(50.7 \mathrm{mmol})$ was dissolved in $\mathrm{THF}_{\mathrm{SD}}(50 \mathrm{~mL})$ and added drop-wise to the Grignard solution over 10 min . After stirring for 1 h at $-30^{\circ} \mathrm{C}$, a $\mathrm{THF}_{\text {SD }}$ solution (30 mL) of $\mathbf{3}(10.16 \mathrm{~g}(71.0 \mathrm{mmol})$) was added drop-wise to the Grignard solution over 10 min and reacted for 12 h at $-30^{\circ} \mathrm{C}$. Saturated $\mathrm{NH}_{4} \mathrm{Cl}_{\mathrm{aq}}(22.5 \mathrm{~mL})$ and pure water (150 mL) were added slowly to the reaction mixture to quench the excess Grignard agent and form two clear layers. The organic layer containing a precursor of the objective molecule was collected. The remaining precursor was extracted from the aqueous layer three times with diethyl ether (50 mL). The organic layers were combined and dried over anhydrous MgSO_{4}. The mixture was concentrated in vacuo and dissolved in methanol $(150 \mathrm{~mL})$ and 25%-ammonia water (22.5 mL). $\mathrm{Cu}(\mathrm{OAc})_{2} 135$ $\mathrm{mg}(0.74 \mathrm{mmol})$ was added to the mixture and stirred for 2 h at room temperature with air bubbling. The reaction mixture was concentrated in vacuo, dissolved in a hexane/ethyl acetate ($\mathrm{v} / \mathrm{v}=1 / 2$) solution (100 mL), and washed three times with 0.1 M EDTA ${ }_{\mathrm{aq}}(100 \mathrm{~mL}, \mathrm{pH} 8.0)$ and pure water, respectively. The organic layer was collected and dried over anhydrous MgSO_{4}. The solvent was removed in vacuo to give an orange crude product. The crude product was passed through a silica gel column using hexane / ethyl acetate / dichloromethane ($\mathrm{v} / \mathrm{v} / \mathrm{v}=10 / 1 / 1$) solution as an eluent ($R_{f}=0.47$). The obtained solution was concentrated to give the pure TIPNO-COOtBu, free radical (5) as an orange-colored low-melting solid.
Yield: $10.29 \mathrm{~g}(63.3 \%)$
DART-MS (Figure S6A): found $[\mathrm{M}+\mathrm{H}]^{+}$(calcd. $[\mathrm{M}+\mathrm{H}]^{+}$); $m / z 321.2$ (321.5).
ESR $\left(\mathrm{CHCl}_{3},-196^{\circ} \mathrm{C}\right.$, Freq.: 9.148 GHz$)$ (Figure S6B): g value $=2.011$.

Synthesis of tert-butyl 4-(11-(tert-butyl)-1-(9H-fluoren-9-yl)-9,9,13-trimethyl-3,8-dioxo-2,10-dioxa-4,7,11-triazatetradecan-12-yl)benzoate (Fmoc-NH-TIPNO-COOtBu (6))

Compound $22.00 \mathrm{~g}(4.64 \mathrm{mmol}), 51.49 \mathrm{~g}(4.64 \mathrm{mmol}), \mathrm{Cu}(0)$ powder $0.296 \mathrm{~g}(4.64 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2} 33.7 \mathrm{mg}(0.112$ $\mathrm{mmol})$, Me_{4} Cyclam $72.3 \mathrm{mg}(0.376 \mathrm{mmol})$ and methanol $(50 \mathrm{~mL})$ were mixed together in a test glass tube. The solution was
deoxygenated using three freeze-pump-thaw cycles under dry N_{2}. Then the reaction mixture was placed in a preheated oil bath at $60^{\circ} \mathrm{C}$ for 24 h . After the reaction, the reaction mixture was added to ethyl acetate (200 mL) and washed three times with $0.1 \mathrm{M} \mathrm{EDTA}_{\mathrm{aq}}(100 \mathrm{~mL}, \mathrm{pH} 8.0), 0.1 \mathrm{M} \mathrm{HCl}_{\mathrm{aq}}$ and distilled water $(100 \mathrm{~mL})$, respectively. The collected organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent, a crude objective was obtained. The crude was purified by a silica gel column chromatography using hexane/diethylether/dichloromethane ($\mathrm{v} / \mathrm{v} / \mathrm{v}=2 / 1 / 1$) as an eluent ($R_{f}=0.32$). Finally, the objective Fmoc-NH-TEMPO-COO $t \mathrm{Bu}(\mathbf{6})$ was obtained after removal of the solvent as a white-colored solid. Yield: 1.97 g (63.2 \%).
${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}, TMS) (Figure S7): $0.45 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), $0.98 \mathrm{ppm}\left(>\mathrm{NC}(\mathrm{CH})_{3}, 9 \mathrm{H}\right), 1.23 \mathrm{ppm}$ $\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), $1.58 \mathrm{ppm}\left(-\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 1.65 \mathrm{ppm}\left(>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}\right), 2.14 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H}\right)$, $3.22 \mathrm{ppm}\left(-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H}\right), 3.34 \mathrm{ppm}\left(-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H}\right), 3.68 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H}\right), 4.20$ $\mathrm{ppm}\left(-\mathrm{OCH}_{2} \mathrm{CH}<, 1 \mathrm{H}\right), 4.32 \mathrm{ppm}\left(-\mathrm{OCH}_{2} \mathrm{CH}<, 2 \mathrm{H}\right), 6.42 \mathrm{ppm}\left(-\mathrm{OC}(\mathrm{O}) \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NHC}(\mathrm{O})-, 1 \mathrm{H}\right), 7.17-7.95 \mathrm{ppm}(\mathrm{Fmoc}, 8 \mathrm{H}$, aromatic ring; TIPNO, 4 H , aromatic ring; $\left.-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}-, 1 \mathrm{H}\right)$.

Synthesis of 4-(11-(tert-butyl)-1-(9H-fluoren-9-yl)-9,9,13-trimethyl-3,8-dioxo-2,10-dioxa-4,7,11-triazatetradecan-12-yl)benzoic acid (Fmoc-NH-TIPNO-COOH (7))

Compound $61.20 \mathrm{~g}(1.79 \mathrm{mmol})$ was dissolved in TFA/dichloromethane/TIS ($\mathrm{v} / \mathrm{v} / \mathrm{v}=8.5 / 1 / 0.5$) $(30 \mathrm{~mL})$ and stirred at room temperature for 12 h . After the reaction, the solvent was removed in vacuo to give a crude. Finally, the objective Fmoc-NH-TIPNO-COOH (7) was obtained by reprecipitation from acetone/hexane system as a white-colored solid.
Yield: 1.05 g (95.2 \%).
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, TMS) (Figure S8): $0.36 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), $0.88 \mathrm{ppm}\left(>\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 1.14 \mathrm{ppm}$ $\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), 1.44 and $1.51 \mathrm{ppm}\left(>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}\right), 1.98 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H}\right), 3.00 \mathrm{ppm}(-$ $\left.\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H}\right), 3.17 \mathrm{ppm}\left(-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H}\right), 3.60 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H}\right), 4.19 \mathrm{ppm}(-$ $\left.\mathrm{OCH}_{2} \mathrm{CH}<, 1 \mathrm{H}\right), 4.28 \mathrm{ppm}\left(-\mathrm{OCH}_{2} \mathrm{CH}<, 2 \mathrm{H}\right), 7.16-7.94 \mathrm{ppm}(\mathrm{Fmoc}, 8 \mathrm{H}$, aromatic ring; TIPNO, 4 H , aromatic ring; $\left.\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}-, 2 \mathrm{H}\right), 12.75 \mathrm{ppm}(-\mathrm{COOH}, 1 \mathrm{H})$.

Synthesis of cyclic tetraleucine NMP initiator

Cyclic tetraleucine peptide initiator was prepared by SPPS using Fmoc chemistry. The target sequence (linear peptide) was constructed on Fmoc-NH-SAL MBHA resin by using Fmoc-L-Leu, Fmoc-L-Asp(OAll), Fmoc-8-amino-3,6dioxaoctanoic acid (Fmoc-deg-COOH), Fmoc-NH-TIPNO-COOH (3 equiv), 1-hydroxybenzotriazole anhydrous (HOBt) (3 equiv) and 1,3-diisopropylcarbodiimide (DIPC) (3 equiv) in DMF for coupling, and piperidine(20 vol\%)/DMF for Fmoc removal. Deprotection of the allyl group of the Asp residue was carried out on resin through treatment with tetrakis(triphenylphosphine)palladium(0) (0.1 equiv) and phenylsilane (10 equiv) in dichloromethane for 3 h at room temperature under a N_{2} atmosphere. Cyclization reaction was then carried out on the resin in DMF for 6 h together with HOBt (3 euqiv) and DIPC (3 equiv). After cyclization, a resultant peptide was cleaved from the resin by treatment with TFA/dichloromethane/TIS ($\mathrm{v} / \mathrm{v} / \mathrm{v}=8.5 / 1 / 0.5$) for 4 h . The obtained cyclic peptide (white-colored solid) was purified by repeated precipitation from a DMF/diethyl ether system, and subsequently identified by MALDI-TOF MS and ${ }^{1} \mathrm{H}$ NMR analyses.
MALDI-TOF MS (Figure 1A): found $[\mathrm{M}+\mathrm{H}]^{+}$(calcd. $\left.[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+},[\mathrm{M}+\mathrm{K}]^{+}\right) ; \mathbf{1}: 1233.68$ (1233.57, 1255.56, 1271.67). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, TMS) (Figure 1B): $0.32 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), 0.75-0.92 ppm $\left(>\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right.$; Leu, $\left.\delta-\mathrm{CH}_{3}, 24 \mathrm{H}\right), 1.11 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), $1.34-1.61 \mathrm{ppm}\left(>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H} ; \mathrm{Leu}, \gamma-\mathrm{CH}, 4 \mathrm{H} ; \mathrm{Leu}, \beta-\mathrm{CH} 2,8 \mathrm{H}\right)$, $1.95 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H}\right), 2.46 \mathrm{ppm}\left(\mathrm{Asp}, \beta-\mathrm{CH}_{2}\right.$, overlapped with DMSO), $3.05 \mathrm{ppm}\left(-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H}\right)$, 3.11-3.28 ppm $\left(-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H}\right), 3.34-3.64 \mathrm{ppm}\left(-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}-, 8 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H}\right)$, $3.88 \mathrm{ppm}\left(-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H}\right), 4.20-4.54 \mathrm{ppm}\left(-\mathrm{OCH}_{2} \mathrm{C}(=\mathrm{O})-, 4 \mathrm{H}\right.$; Asp, $\left.\alpha-\mathrm{CH}, 1 \mathrm{H} ; \mathrm{Leu}, \alpha-\mathrm{CH}, 4 \mathrm{H}\right), 7.00-8.48 \mathrm{ppm}$ (TIPNO, 4 H , aromatic ring; $-\mathrm{CONH}_{2}, 2 \mathrm{H}$; amide bonds of cyclic peptide, 9 H).

Synthesis of \mathbf{N}-acryloylalanine-O-methyl ester (NAAMe)

H-Ala-OMe hydrochloride $5.00 \mathrm{~g}(35.8 \mathrm{mmol})$ and TEA $11.0 \mathrm{~mL}(78.9 \mathrm{mmol})$ were dissolved in chloroform (200 mL) and cooled over an ice bath. Acryloyl chloride $3.48 \mathrm{~mL}(43.0 \mathrm{mmol})$ was diluted with chloroform (15 mL) and added dropwise to the amino acid solution. After the addition, the reaction solution was stirred for overnight at room temperature. The reaction mixture was washed five times with $1.5 \mathrm{M} \mathrm{MgSO}_{4 \mathrm{aq}}(100 \mathrm{~mL} \times 5)$. The organic layer was collected and dried over anhydrous NaSO_{4}. The solution was concentrated in vacuo and then passed through a silica gel column using diethylether as an eluent $\left(\mathrm{R}_{f}=0.48\right)$. The resultant solution was concentrated in vacuo to give a crude NAAMe as a pale yellow colored liquid. To improve purity of the monomer, the pale yellow-colored NAAMe was passed through a basic alumina short column using diethyl ether as an eluent. A solvent was removed from the obtained solution to give pure NAAMe as a white-colored solid.
Yield: 3.32 g (58.9 \%).
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, TMS) (Figure S21): $1.30 \mathrm{ppm}\left(-\mathrm{NHCH}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{O}) \mathrm{O}-, 3 \mathrm{H}\right), 3.62 \mathrm{ppm}\left(-\mathrm{C}(\mathrm{O}) \mathrm{OCH} H_{3}, 3 \mathrm{H}\right), 4.33 \mathrm{ppm}(-$ $\left.\mathrm{NHCH}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{O}) \mathrm{O}-, 1 \mathrm{H}\right), 5.62$ and $6.10 \mathrm{ppm}\left(-\mathrm{CH}=\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{a}^{\prime}}, 2 \mathrm{H}\right), 6.27 \mathrm{ppm}\left(-\mathrm{CH}=\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{a}^{\prime}}, 1 \mathrm{H}\right), 8.51 \mathrm{ppm}(-\mathrm{CONH}-, 1 \mathrm{H})$.

Synthesis of multiblock copolymers P1-P5, [Leu ${ }_{4}-b-$ PNIPAM $]_{m}$

N-isopropylacrylamide (NIPAM) $113.16 \mathrm{mg}(1.0 \mathrm{mmol})$, cyclic tetraleucine peptide initiator $12.3 \mathrm{mg}(0.010 \mathrm{mmol})$ and DMF $(41.2 \mu \mathrm{~L})$ were mixed together in a glass test tube (5 sets, monomer concentration: ca. 6 M). Note that the mixture could not form a homogeneous solution below the melting point of NIPAM. The heterogeneous mixtures were
deoxygenated using three freeze-pump-thaw cycles under dry N_{2}. Then the reaction mixtures were placed in a preheated oil bath at $120^{\circ} \mathrm{C}$ to initiate polymerization. At this temperature, the mixture could form a homogeneous solution. After polymerization ($1-24 \mathrm{~h}$), the reaction tubes were removed from the oil bath, rapidly cooled in liquid N_{2} and exposed to ambient air to stop the polymerization. The resulting polymers P1-P5 were precipitated by dropping the polymer solutions into a large excess of diethyl ether. After centrifugation, the obtained multiblock copolymers were further purified by a reprecipitation method from a DMF/diethylether system. The chemical structure and molecular weight of the multiblock copolymers (white-colored solid) were evaluated by ${ }^{1}$ H NMR, FTIR, CD and SEC analyses.
SEC (THF, $40^{\circ} \mathrm{C}$, PMMA standard): P1 (Figure S11A, blue line): $M_{\mathrm{n}}=7000, M_{\mathrm{p}}=10300, ~ D=1.77$. P2 (Figure 3A, blue line): $M_{\mathrm{n}}=11200, M_{\mathrm{p}}=17800, ~ D=1.67$. P3 (Figure S12A, blue line): $M_{\mathrm{n}}=19700, M_{\mathrm{p}}=30600, ~ D=1.87$. P4 (Figure S13A, blue line): $M_{\mathrm{n}}=24500, M_{\mathrm{p}}=36100, ~ D=1.67$. P5 (Figure S14A, blue line): $M_{\mathrm{n}}=38600, M_{\mathrm{p}}=64300, ~ D=2.12$.
Transmission-FTIR (cast film from CHCl_{3} onto CaF_{2}): P1 (Figure S11B, blue line): $3432 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{CON}-\mathrm{H}\right.$), $3301 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}\right.$: CON-H), $3078 \mathrm{~cm}^{-1}$ (v_{s} : C-H (methylene)), $2973 \mathrm{~cm}^{-1}$ (v_{s} : C-H (methyl)), $2936 \mathrm{~cm}^{-1}$ (v_{s} : C-H (methine)), $2877 \mathrm{~cm}^{-1}$ ($v_{\mathrm{s}}:$ C-H (methyl) $), 1650 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 1545 \mathrm{~cm}^{-1}(\delta: \mathrm{CON}-\mathrm{H}), 1460 \mathrm{~cm}^{-1}(\delta: \mathrm{C}-\mathrm{H}$ (methylene)$), 1388 \mathrm{~cm}^{-1}$ ($\delta: \mathrm{C}-\mathrm{H}$ (methyl), $\delta: i \operatorname{Pr}$ group). P2 (Figure S10, blue line): $3429 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{CON}-\mathrm{H}\right), 3300 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{CON}-\mathrm{H}\right), 3071 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methylene)), $2970 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}(\right.$ methyl $)$), $2935 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}(\right.$ methine $\left.)\right), 2876 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}(\right.$ methyl $\left.)\right), 1645 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 1538$ $\mathrm{cm}^{-1}(\delta: \mathrm{CON}-\mathrm{H}), 1476 \mathrm{~cm}^{-1}(\delta: \mathrm{C}-\mathrm{H}$ (methylene) $), 1368 \mathrm{~cm}^{-1}(\delta: \mathrm{C}-\mathrm{H}$ (methyl), $\delta: i \operatorname{Pr}$ group). P3 (Figure S12B, blue line): $3431 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{CON}-\mathrm{H}\right), 3301 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{CON}-\mathrm{H}\right), 3073 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methylene)$), 2969 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methyl)), $2935 \mathrm{~cm}^{-1}$ (v_{s} : C-H (methine)), $2878 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}(\right.$ methyl $)$), $1646 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 1539 \mathrm{~cm}^{-1}(\delta: \mathrm{CON}-\mathrm{H}), 1459 \mathrm{~cm}^{-1}(\delta: \mathrm{C}-\mathrm{H}$ (methylene)), $1376 \mathrm{~cm}^{-1}$ ($\delta: \mathrm{C}-\mathrm{H}$ (methyl), $\delta: i \operatorname{Pr}$ group). P4 (Figure S13B, blue line): $3429 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{CON}-\mathrm{H}\right.$), $3306 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}\right.$: CON-H), $3068 \mathrm{~cm}^{-1}$ (v_{s} : C-H (methylene)), $2970 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}\right.$: C-H (methyl)), $2934 \mathrm{~cm}^{-1}$ (v_{s} : C-H (methine)), $2878 \mathrm{~cm}^{-1}$ (v_{s} : C-H (methyl)), $1648 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 1535 \mathrm{~cm}^{-1}(\delta: \mathrm{CON}-\mathrm{H}), 1458 \mathrm{~cm}^{-1}\left(\delta: \mathrm{C}-\mathrm{H}\right.$ (methylene)), $1376 \mathrm{~cm}^{-1}$ ($\delta: \mathrm{C}-\mathrm{H}$ (methyl), $\delta: i \operatorname{Pr}$ group). P5 (Figure S14B, blue line): $3433 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{CON}-\mathrm{H}\right), 3303 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{CON}-\mathrm{H}\right), 3068 \mathrm{~cm}^{-1}$ (v_{s} : C-H (methylene)), $2970 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}(\right.$ methyl $)$), $2932 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}(\right.$ methine $)$), $2876 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}(\right.$ methyl $)$), $1646 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 1536$ $\mathrm{cm}^{-1}(\delta: \mathrm{CON}-\mathrm{H}), 1457 \mathrm{~cm}^{-1}\left(\delta: \mathrm{C}-\mathrm{H}\right.$ (methylene)), $1373 \mathrm{~cm}^{-1}$ ($\delta: \mathrm{C}-\mathrm{H}$ (methyl), $\delta: i \operatorname{Pr}$ group).
${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, TMS): P1 (Figure S11C, blue line): $0.50 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), 0.90 ppm (Leu, $\delta-\mathrm{CH}_{3}$, $\left.24 \mathrm{H} ;>\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 1.05-2.30 \mathrm{ppm}$ (PNIPAM, $2 n \mathrm{H}$, methylene of main chain; PNIPAM, $n \mathrm{H}$, methine of main chain; PNIPAM, $6 n \mathrm{H}$, methyl of side chain; $>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}$, enantiomer; $>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}$; Leu, $\gamma-\mathrm{CH}, 4 \mathrm{H}$; Leu, $\beta-\mathrm{CH}, 8 \mathrm{H}$; $>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H}$; Asp, $\left.\beta-\mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.80 \mathrm{ppm}\left(-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}-, 8 \mathrm{H}\right), 4.00 \mathrm{ppm}(\mathrm{Leu}, \alpha-\mathrm{CH}, 4 \mathrm{H}$; PNIPAM, $n \mathrm{H}$, methine of side chain), 3.20-4.50 ppm ($-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, \quad 2 \mathrm{H} ;-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ; \quad-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H}$; $\left.>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;-\mathrm{OCH}_{2} \mathrm{C}(=\mathrm{O})-, 4 \mathrm{H} ; \mathrm{Asp}, \alpha-\mathrm{CH}, 1 \mathrm{H}\right), 6.00-7.80 \mathrm{ppm}$ (PNIPAM, $n \mathrm{H}$, amide; TIPNO, 4 H , aromatic ring; $-\mathrm{CONH}_{2}, 2 \mathrm{H}$; amide bonds of peptide, 9 H). P2 (Figure 3C, blue line): $0.50 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), $0.90 \mathrm{ppm}\left(\mathrm{Leu}, \delta-\mathrm{CH}_{3}, 24 \mathrm{H} ;>\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 1.05-2.40 \mathrm{ppm}$ (PNIPAM, $2 n \mathrm{H}$, methylene of main chain; PNIPAM, $n \mathrm{H}$, methine of main chain; PNIPAM, $6 n \mathrm{H}$, methyl of side chain; $>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}$, enantiomer; $>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}$; Leu, $\gamma-\mathrm{CH}, 4 \mathrm{H}$; Leu, $\beta-\mathrm{CH}_{2}, 8 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H}$; Asp, $\left.\beta-\mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.80 \mathrm{ppm}\left(-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}-, 8 \mathrm{H}\right), 4.00 \mathrm{ppm}(\mathrm{Leu}, \alpha-\mathrm{CH}$, 4 H ; PNIPAM, $n \mathrm{H}$, methine of side chain), $3.20-4.50 \mathrm{ppm}\left(-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H}\right.$; $-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H}$; $\left.\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;-\mathrm{OCH}_{2} \mathrm{C}(=\mathrm{O})-, 4 \mathrm{H} ; \mathrm{Asp}, \alpha-\mathrm{CH}, 1 \mathrm{H}\right), 6.00-7.80 \mathrm{ppm}$ (PNIPAM, $n \mathrm{H}$, amide; TIPNO, 4 H , aromatic ring; $-\mathrm{CONH}_{2}, 2 \mathrm{H}$; amide bonds of peptide, 9 H). P3 (Figure S12C, blue line): 0.50 ppm $\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), $0.90 \mathrm{ppm}\left(\mathrm{Leu}, \delta-\mathrm{CH}_{3}, 24 \mathrm{H} ;>\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 1.05-2.90 \mathrm{ppm}(\mathrm{PNIPAM}, 2 n \mathrm{H}$, methylene of main chain; PNIPAM, $n \mathrm{H}$, methine of main chain; PNIPAM, $6 n \mathrm{H}$, methyl of side chain; $>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}$, enantiomer; $>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}$; Leu, $\gamma-\mathrm{CH}, 4 \mathrm{H}$; Leu, $\beta-\mathrm{CH}_{2}, 8 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H}$; Asp, $\left.\beta-\mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.80 \mathrm{ppm}\left(-\mathrm{O}(\mathrm{CH})_{2} \mathrm{O}-, 8 \mathrm{H}\right), 4.00$ ppm (Leu, $\alpha-\mathrm{CH}, 4 \mathrm{H}$; PNIPAM, $n \mathrm{H}$, methine of side chain), 3.20-4.50 ppm (-OC $(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H}$; $\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;-\mathrm{OCH}_{2} \mathrm{C}(=\mathrm{O})-, 4 \mathrm{H} ; \mathrm{Asp}, \alpha-\mathrm{CH}$, 1 H), $6.00-7.80 \mathrm{ppm}$ (PNIPAM, $n \mathrm{H}$, amide; TIPNO, 4 H , aromatic ring; $-\mathrm{CONH} \mathrm{H}_{2}, 2 \mathrm{H}$; amide bonds of peptide, 9 H). $\mathbf{P 4}$ (Figure S13C, blue line): $0.50 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), $0.90 \mathrm{ppm}\left(\mathrm{Leu}, \delta-\mathrm{CH}_{3}, 24 \mathrm{H} ;>\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 1.05-$ 2.70 ppm (PNIPAM, $2 n \mathrm{H}$, methylene of main chain; PNIPAM, $n \mathrm{H}$, methine of main chain; PNIPAM, $6 n \mathrm{H}$, methyl of side chain; $>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}$, enantiomer; $>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}$; Leu, $\gamma-\mathrm{CH}, 4 \mathrm{H}$; Leu, $\beta-\mathrm{CH}_{2}, 8 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H} ; \mathrm{Asp}, \beta-\mathrm{CH}_{2}$, $2 \mathrm{H}), 3.80 \mathrm{ppm}\left(-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}-, 8 \mathrm{H}\right), 4.00 \mathrm{ppm}(\mathrm{Leu}, \alpha-\mathrm{CH}, 4 \mathrm{H}$; PNIPAM, $n \mathrm{H}$, methine of side chain), 3.20-4.50 ppm ($\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ;-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH} \mathrm{H}_{2} \mathrm{O}-, 4 \mathrm{H}$; $-\mathrm{OCH}_{2} \mathrm{C}(=\mathrm{O})-, 4 \mathrm{H}$; Asp, $\alpha-\mathrm{CH}, 1 \mathrm{H}$), 6.00-7.80 ppm (PNIPAM, $n \mathrm{H}$, amide; TIPNO, 4 H , aromatic ring; $-\mathrm{CONH} \mathrm{H}_{2}, 2 \mathrm{H}, 2 \mathrm{H}$; amide bonds of peptide, 9H). P5 (Figure S14C, blue line): $0.50 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), 0.90 ppm (Leu, δ $\left.\mathrm{CH}_{3}, 24 \mathrm{H} ;>\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 1.05-2.60 \mathrm{ppm}$ (PNIPAM, $2 n \mathrm{H}$, methylene of main chain; PNIPAM, $n \mathrm{H}$, methine of main chain; PNIPAM, $6 n \mathrm{H}$, methyl of side chain; $>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}$, enantiomer; $>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}$; Leu, $\gamma-\mathrm{CH}, 4 \mathrm{H}$; Leu, $\beta-\mathrm{CH}_{2}$, $8 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H}$; Asp, $\left.\beta-\mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.80 \mathrm{ppm}\left(-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}-, 8 \mathrm{H}\right), 4.00 \mathrm{ppm}(\mathrm{Leu}, \alpha-\mathrm{CH}, 4 \mathrm{H} ;$ PNIPAM, $n \mathrm{H}$, methine of side chain), $3.20-4.50 \mathrm{ppm}\left(-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ;-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H}\right.$; $\left.>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;-\mathrm{OCH}_{2} \mathrm{C}(=\mathrm{O})-, 4 \mathrm{H} ; \mathrm{Asp}, \alpha-\mathrm{CH}, 1 \mathrm{H}\right), 6.00-7.80 \mathrm{ppm}$ (PNIPAM, $n \mathrm{H}$, amide; TIPNO, 4 H , aromatic ring; $-\mathrm{CONH}_{2}, 2 \mathrm{H}$; amide bonds of peptide, 9 H).

Fragmentation of multiblock copolymers P1-P5

The multiblock copolymer P1, P2, P3, P4 or $\mathbf{P 5}$, $\left[(\mathrm{Leu})_{4}-b-\mathrm{PNIPAM}\right]_{m},(10.0 \mathrm{mg}, 1.43 \mu \mathrm{~mol}(\mathbf{P 1}), 0.89 \mu \mathrm{~mol}(\mathbf{P 2}), 0.51$ $\mu \mathrm{mol}(\mathbf{P 3}), 0.41 \mu \mathrm{~mol}(\mathbf{P 4}), 0.26 \mu \mathrm{~mol}(\mathbf{P 5}))$ and TIPNO ($22.0 \mathrm{mg}, 100 \mu \mathrm{~mol}$) were initially dissolved in N-methyl-2pyrrolidone $(100 \mu \mathrm{~L})$, and the solution was poured into a glass test tube. The solution was deoxygenated using three freeze-
pump-thaw cycles under dry N_{2}. The fragmentation reaction was then performed in a preheated oil bath at $120{ }^{\circ} \mathrm{C}$ for 12 h . The fragmented polymer was purified by repeated precipitation in diethyl ether and dried to give a pale orange-colored powder. The molecular weight and \doteq were evaluated by SEC analysis, while the structure was analyzed by FTIR, CD and ${ }^{1}$ H NMR spectroscopies.
SEC (THF, $40^{\circ} \mathrm{C}$, PMMA standard): P1(fragment) (Figure S11A, red line): $M_{\mathrm{n}}=2400, M_{\mathrm{p}}=3400, D=1.20$. P2(fragment) (Figure 3A, red line): $M_{\mathrm{n}}=3800, M_{\mathrm{p}}=4800, D=1.25$. P3(fragment) (Figure S12A, red line): $M_{\mathrm{n}}=7500, M_{\mathrm{p}}=9600, D=1.19$. P4(fragment) (Figure S13A, red line): $M_{\mathrm{n}}=8300, M_{\mathrm{p}}=12900, ~ D=1.21$. $\mathbf{P 5}$ (fragment) (Figure S14A, red line): $M_{\mathrm{n}}=12400$, $M_{\mathrm{p}}=21800, ~ D=1.28$.
Transmission-FTIR (cast film from CHCl_{3} onto CaF_{2}): $\mathbf{P 1}$ (fragment) (Figure S11B, red line): $3432 \mathrm{~cm}^{-1}$ (v_{s} : CON-H), 3301 $\mathrm{cm}^{-1}\left(v_{\mathrm{s}}:\right.$ CON-H), $3078 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methylene) $), 2973 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methyl)), $2936 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methine)), $2877 \mathrm{~cm}^{-1}$ ($v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}($ methyl $)$), $1650 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 1545 \mathrm{~cm}^{-1}(\delta: \mathrm{CON}-\mathrm{H}), 1460 \mathrm{~cm}^{-1}$ ($\delta: \mathrm{C}-\mathrm{H}$ (methylene)), $1388 \mathrm{~cm}^{-1}(\delta: \mathrm{C}-\mathrm{H}$ (methyl), $\delta: i \operatorname{Pr}$ group). P2(fragment) (Figure S10, red line): $3429 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{CON}-\mathrm{H}\right.$), $3300 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{CON}-\mathrm{H}\right), 3071 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}\right.$: $\mathrm{C}-\mathrm{H}$ (methylene)), $2970 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methyl) $), 2935 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methine)), $2876 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methyl)), $1645 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}\right.$: $\mathrm{C}(=\mathrm{O}) \mathrm{NH}), 1538 \mathrm{~cm}^{-1}(\delta: \mathrm{CON}-\mathrm{H}), 1476 \mathrm{~cm}^{-1}\left(\delta: \mathrm{C}-\mathrm{H}\right.$ (methylene)), $1368 \mathrm{~cm}^{-1}$ ($\delta: \mathrm{C}-\mathrm{H}$ (methyl), $\delta: i \operatorname{Pr}$ group). P3(fragment) (Figure S12B, red line): $3431 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}\right.$: CON-H), $3301 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{CON}-\mathrm{H}\right), 3073 \mathrm{~cm}^{-1}$ (v_{s} : C-H (methylene)), $2969 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}(\right.$ methyl $)$), $2935 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}(\right.$ methine $)$), $2878 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}(\right.$ methyl $)$), $1646 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 1539$ $\mathrm{cm}^{-1}(\delta: \mathrm{CON}-\mathrm{H}), 1459 \mathrm{~cm}^{-1}\left(\delta: \mathrm{C}-\mathrm{H}\right.$ (methylene)), $1376 \mathrm{~cm}^{-1}(\delta: \mathrm{C}-\mathrm{H}$ (methyl), $\delta: i \operatorname{Pr}$ group). P4(fragment) (Figure S13B, red line): $3429 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}\right.$: CON-H), $3306 \mathrm{~cm}^{-1}$ (v_{s} : CON-H), $3068 \mathrm{~cm}^{-1}$ (v_{s} : C-H (methylene)), $2970 \mathrm{~cm}^{-1}$ (v_{s} : C-H (methyl)), $2934 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}(\right.$ methine $)$), $2878 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}(\right.$ methyl $)$), $1648 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 1535 \mathrm{~cm}^{-1}(\delta: \mathrm{CON}-\mathrm{H}), 1458 \mathrm{~cm}^{-1}$ (δ : C-H (methylene)), $1376 \mathrm{~cm}^{-1}\left(\delta: \mathrm{C}-\mathrm{H}\right.$ (methyl), $\delta: i \operatorname{Pr}$ group). P5(fragment) (Figure S14B, red line): $3433 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}\right.$: CON$\mathrm{H}), 3303 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}\right.$: CON-H), $3068 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methylene)), $2970 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methyl)), $2932 \mathrm{~cm}^{-1}$ (v_{s} : C-H (methine)), $2876 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}(\right.$ methyl $)$), $1646 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 1536 \mathrm{~cm}^{-1}(\delta: \mathrm{CON}-\mathrm{H}), 1457 \mathrm{~cm}^{-1}(\delta: \mathrm{C}-\mathrm{H}$ (methylene)$), 1373 \mathrm{~cm}^{-1}$ ($\delta: \mathrm{C}-\mathrm{H}$ (methyl), $\delta: i \mathrm{Pr}$ group).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right)$: $\mathbf{P 1}$ (fragment) (Figure S 11 C , red line): $0.50 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), 0.90 ppm (Leu, $\left.\delta-\mathrm{CH}_{3}, 24 \mathrm{H} ;>\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 1.05-2.50 \mathrm{ppm}$ (PNIPAM, $2 n \mathrm{H}$, methylene of main chain; PNIPAM, $n \mathrm{H}$, methine of main chain; PNIPAM, $6 n \mathrm{H}$, methyl of side chain; $>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}$, enantiomer; $>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}$; Leu, γ - $\mathrm{CH}, 4 \mathrm{H}$; Leu, $\beta-\mathrm{CH}_{2}$, $8 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H}$; Asp, $\left.\beta-\mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.80 \mathrm{ppm}\left(-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}-, 8 \mathrm{H}\right), 4.00 \mathrm{ppm}(\mathrm{Leu}, \alpha-\mathrm{CH}, 4 \mathrm{H} ;$ PNIPAM, $n \mathrm{H}$, methine of side chain), $3.20-4.50 \mathrm{ppm}\left(-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ;-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H}\right.$; $\left.>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;-\mathrm{OCH}_{2} \mathrm{C}(=\mathrm{O})-, 4 \mathrm{H} ; \mathrm{Asp}, \alpha-\mathrm{CH}, 1 \mathrm{H}\right), 6.00-7.80 \mathrm{ppm}$ (PNIPAM, $n \mathrm{H}$, amide; TIPNO, 4 H , aromatic ring; $-\mathrm{CONH}_{2}, 2 \mathrm{H}$; amide bonds of peptide, 9 H). $\mathbf{P 2}$ (fragment) (Figure 3C, red line): 0.50 ppm $\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), $0.90 \mathrm{ppm}\left(\mathrm{Leu}, \delta-\mathrm{CH}_{3}, 24 \mathrm{H} ;>\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 1.05-2.50 \mathrm{ppm}$ (PNIPAM, $2 n \mathrm{H}$, methylene of main chain; PNIPAM, $n \mathrm{H}$, methine of main chain; PNIPAM, $6 n \mathrm{H}$, methyl of side chain; $>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}$, enantiomer; $>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}$; Leu, $\gamma-\mathrm{CH}, 4 \mathrm{H}$; Leu, $\beta-\mathrm{CH}_{2}, 8 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H}$; Asp, $\left.\beta-\mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.80 \mathrm{ppm}\left(-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}-, 8 \mathrm{H}\right), 4.00$ ppm (Leu, $\alpha-\mathrm{CH}, 4 \mathrm{H}$; PNIPAM, $n \mathrm{H}$, methine of side chain), 3.20-4.50 ppm (-OC(=O)NHCH $\mathrm{N}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H}$; $\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;-\mathrm{OCH} \mathrm{C}_{2} \mathrm{C}(=\mathrm{O})-, 4 \mathrm{H} ;$ Asp, $\alpha-\mathrm{CH}$, 1 H), $6.00-7.80 \mathrm{ppm}$ (PNIPAM, $n \mathrm{H}$, amide; TIPNO, 4 H , aromatic ring; $-\mathrm{CONH}_{2}, 2 \mathrm{H}$; amide bonds of peptide, 9 H). $\mathbf{P 3}$ (fragment) (Figure S12C, red line): $0.50 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), $0.90 \mathrm{ppm}\left(\mathrm{Leu}, \delta-\mathrm{CH}_{3}, 24 \mathrm{H} ;>\mathrm{NC}(\mathrm{CH})_{3}\right.$, 9 H), 1.05-2.90 ppm (PNIPAM, $2 n \mathrm{H}$, methylene of main chain; PNIPAM, $n \mathrm{H}$, methine of main chain; PNIPAM, $6 n \mathrm{H}$, methyl of side chain; $>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}$, enantiomer; $>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}$; Leu, $\gamma-\mathrm{CH}, 4 \mathrm{H} ;$ Leu, $\beta-\mathrm{CH} \mathrm{H}_{2}, 8 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H}$; Asp, $\left.\beta-\mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.80 \mathrm{ppm}\left(-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}-, 8 \mathrm{H}\right), 4.00 \mathrm{ppm}(\mathrm{Leu}, \alpha-\mathrm{CH}, 4 \mathrm{H} ;$ PNIPAM, $n \mathrm{H}$, methine of side chain), 3.20-4.50 ppm $\left(-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, \quad 2 \mathrm{H} ; \quad-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, \quad 2 \mathrm{H} ; \quad-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, \quad 4 \mathrm{H} ; \quad>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, \quad 1 \mathrm{H} ;-\right.$ $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;-\mathrm{OCH}_{2} \mathrm{C}(=\mathrm{O})-, 4 \mathrm{H} ; \mathrm{Asp}, \alpha-\mathrm{CH}, 1 \mathrm{H}$), 6.00-7.80 ppm (PNIPAM, $n \mathrm{H}$, amide; TIPNO, 4 H , aromatic ring; $\mathrm{CONH}_{2}, 2 \mathrm{H}$; amide bonds of peptide, 9 H$)$. P4(fragment) (Figure S13C, red line): $0.50 \mathrm{ppm}\left(>\mathrm{CHCH}(\mathrm{CH})_{2}, 3 \mathrm{H}\right.$, enantiomer), $0.85 \mathrm{ppm}\left(\mathrm{Leu}, \delta-\mathrm{CH}_{3}, 24 \mathrm{H} ;>\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 1.05-2.40 \mathrm{ppm}$ (PNIPAM, 2 nH , methylene of main chain; PNIPAM, $n \mathrm{H}$, methine of main chain; PNIPAM, $6 n \mathrm{H}$, methyl of side chain; $>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}$, enantiomer; $>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}$; Leu, $\gamma-\mathrm{CH}, 4 \mathrm{H}$; Leu, $\beta-\mathrm{CH}_{2}, 8 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H}$; Asp, $\left.\beta-\mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.80 \mathrm{ppm}\left(-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}-, 8 \mathrm{H}\right), 4.00 \mathrm{ppm}(\mathrm{Leu}, \alpha-\mathrm{CH}$, 4 H ; PNIPAM, $n \mathrm{H}$, methine of side chain), $3.20-4.50 \mathrm{ppm}\left(-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ;-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH} \mathrm{N}_{2} \mathrm{NH}-, 2 \mathrm{H}\right.$; $\left.\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;-\mathrm{OCH}_{2} \mathrm{C}(=\mathrm{O})-, 4 \mathrm{H} ; \mathrm{Asp}, \alpha-\mathrm{CH}, 1 \mathrm{H}\right), 6.00-7.80 \mathrm{ppm}$ (PNIPAM, $n \mathrm{H}$, amide; TIPNO, 4 H , aromatic ring; $-\mathrm{CONH}_{2}, 2 \mathrm{H}$; amide bonds of peptide, 9 H). $\mathbf{P 5}$ (fragment) (Figure S14C, red line): $0.50 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), $0.90 \mathrm{ppm}\left(\mathrm{Leu}, \delta-\mathrm{CH}_{3}, 24 \mathrm{H} ;>\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 1.05-2.50 \mathrm{ppm}($ PNIPAM, $2 n \mathrm{H}$, methylene of main chain; PNIPAM, $n \mathrm{H}$, methine of main chain; PNIPAM, $6 n \mathrm{H}$, methyl of side chain; $>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}$, enantiomer; $>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}$; Leu, $\gamma-\mathrm{CH}, 4 \mathrm{H}$; Leu, $\beta-\mathrm{CH}_{2}, 8 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H} ;$ Asp, $\left.\beta-\mathrm{CH} \mathrm{H}_{2}, 2 \mathrm{H}\right), 3.70 \mathrm{ppm}\left(-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}-\right.$, 8 H), $4.02 \mathrm{ppm}\left(\mathrm{Leu}, \alpha-\mathrm{CH}, 4 \mathrm{H}\right.$; PNIPAM, $n \mathrm{H}$, methine of side chain), 3.20-4.50 ppm $\left(-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H}\right.$; $\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;-\mathrm{OCH} 2 \mathrm{C}(=\mathrm{O})-, 4 \mathrm{H} ;$ Asp, $\alpha-\mathrm{CH}$, 1 H), 6.00-7.80 ppm (PNIPAM, $n \mathrm{H}$, amide; TIPNO, 4 H , aromatic ring; - $\mathrm{CONH}_{2}, 2 \mathrm{H}$; amide bonds of peptide, 9 H).

Synthesis and fragmentation of P6, [(Leu) ${ }_{4}$ - b-PNAAMe] ${ }_{m}$

N -acryloylalanine- O-methyl ester (NAAMe) $157.17 \mathrm{mg}(1.0 \mathrm{mmol})$, cyclic tetraleucine peptide initiator $12.3 \mathrm{mg}(0.010$ mmol), and DMF $(41.2 \mu \mathrm{~L})$ were mixed together in a glass test tube (monomer concentration: ca. 5 M). Note that the mixture could not form a homogeneous solution below the melting point of NAAMe. The heterogeneous mixture was
deoxygenated using three freeze-pump-thaw cycles under dry N_{2}. The reaction mixture was placed in a preheated oil bath at $120^{\circ} \mathrm{C}$ for 18 h . At this temperature, the mixture could form a homogeneous solution. After polymerization, the reaction tube was removed from the oil bath, rapidly cooled in liquid N_{2}, and exposed to ambient air to stop the polymerization reaction. The resulting polymer $\mathbf{P 6}$ was precipitated by dropping the polymer solutions into a large excess of diethyl ether. After centrifugation, the obtained multiblock copolymer was further purified using a reprecipitation method from a DMF/diethyl ether system. Fragmentation of P6 was carried out as follows: P6 ($10.0 \mathrm{mg}, 0.31 \mu \mathrm{~mol})$ and TIPNO (22.0 mg , $100 \mu \mathrm{~mol})$ were dissolved in N-methyl-2-pyrrolidone ($100 \mu \mathrm{~L}$), and the solution was poured into a glass test tube. The solution was deoxygenated using three freeze-pump-thaw cycles under dry N_{2}. The fragmentation reaction was then performed in a preheated oil bath at $120^{\circ} \mathrm{C}$ for 12 h . The fragmented polymer was purified by repeated precipitation in diethyl ether and dried to give a pale brown-colored powder. The chemical structure and molecular weight of the original and fragmented P6 were evaluated by ${ }^{1} \mathrm{H}$ NMR, FTIR and SEC analyses.
SEC (THF, $40^{\circ} \mathrm{C}$, PMMA standard): P6 $M_{\mathrm{n}}=32300, M_{\mathrm{p}}=53000, ~ D=1.46, \mathbf{P 6}$ (fragment) $M_{\mathrm{n}}=12700, M_{\mathrm{p}}=19800, ~ D=1.23$ (Figure S15A).
Transmission-FTIR (cast film from CHCl_{3} onto CaF_{2}) (Figure S15B): P6 \& P6(fragment) $3343 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}\right.$: CON-H), $3211 \mathrm{~cm}^{-1}$ (v_{s} : CON-H), $3070 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}\right.$: C-H (methylene)), $2986 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methyl)), $2955 \mathrm{~cm}^{-1}$ ($v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}$ (methine)), $2883 \mathrm{~cm}^{-1}$ (v_{s} : $\mathrm{C}-\mathrm{H}($ methine $)$), $2855 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}(\right.$ methyl $\left.)\right), 1730 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}(=\mathrm{O}) \mathrm{O}\right), 1661 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 1544 \mathrm{~cm}^{-1}(\delta: \mathrm{CON}-\mathrm{H})$, $1440 \mathrm{~cm}^{-1}\left(\delta: \mathrm{C}-\mathrm{H}\right.$ (methylene), $\delta: \mathrm{COO}-\mathrm{CH}_{3}$), $1381 \mathrm{~cm}^{-1}$ ($\delta: \mathrm{C}-\mathrm{H}$ (methyl), $\delta: \mathrm{COO}-\mathrm{CH}_{3}$).
${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, TMS) (Figure S15C): P6 \& P6(fragment) $0.50 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), 0.90 ppm (Leu, δ $\left.\mathrm{CH}_{3}, 24 \mathrm{H} ;>\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 1.05-2.70 \mathrm{ppm}$ (PNAAMe, $3 n \mathrm{H}$, methyl of side chain; PNAAMe, $2 n \mathrm{H}$, methylene of main chain; PNAAMe, $n \mathrm{H}$, methine of main chain; $>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}$, enantiomer; $>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}$; Leu, $\gamma-\mathrm{CH}, 4 \mathrm{H}$; Leu, β - CH_{2}, $8 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H}$; Asp, $\beta-\mathrm{CH}_{2}, 2 \mathrm{H}$), , 3.65 ppm (PNAAMe, $3 n \mathrm{H}$, methyl ester), 3.25-3.95 ppm ($\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ;-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}-, 8 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H}$; $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;-\mathrm{OCH}_{2} \mathrm{C}(=\mathrm{O})-, 4 \mathrm{H} ; \mathrm{Asp}, \alpha-\mathrm{CH}, 1 \mathrm{H}$), 4.00-4.70 ppm (Leu, $\alpha-\mathrm{CH}, 4 \mathrm{H} ;$ PNAAMe, $n \mathrm{H}, \alpha$-methine), 6.808.40 ppm (PNAAMe, $n \mathrm{H}$, amide; TIPNO, 4 H , aromatic ring; $-\mathrm{CONH}_{2}, 2 \mathrm{H}$; amide bonds of peptide, 9 H).

Synthesis and fragmentation of P7, [(Leu) $\left.)_{4}-b-\mathrm{PtBuA}\right]_{m}$

Tert-butyl acrylate $(t \mathrm{BuA}) 144.5 \mu \mathrm{~L}(1.0 \mathrm{mmol})$ and cyclic tetraleucine peptide initiator $12.3 \mathrm{mg}(0.010 \mathrm{mmol})$ were dissolved in DMF ($41.2 \mu \mathrm{~L}$), and the mixture was poured into a glass test tube (monomer concentration: 5 M). The solution was deoxygenated using three freeze-pump-thaw cycles under dry N_{2}. Then the reaction mixture was placed in a preheated oil bath at $120^{\circ} \mathrm{C}$ for 17 h . After polymerization, the reaction tube was removed from the oil bath, rapidly cooled in liquid N_{2} and exposed to ambient air to stop the polymerization. The resulting polymer P7 was precipitated by dropping the polymer solutions into a large excess of water/methanol ($\mathrm{v} / \mathrm{v}=1 / 4$). After centrifugation, the obtained multiblock copolymer was further purified by a reprecipitation method from DMF/(water/methanol) system. Fragmentation of $\mathbf{P 7}$ was carried out as follows, P7 $(10.0 \mathrm{mg}, 0.38 \mu \mathrm{~mol})$ and TIPNO $(22.0 \mathrm{mg}, 100 \mu \mathrm{~mol})$ were dissolved in N-methyl-2-pyrrolidone ($100 \mu \mathrm{~L}$), and the solution was poured into a test glass tube. The solution was deoxygenated by three freeze-pump-thaw cycles under dry N_{2}. The fragmentation reaction was then performed in a preheated oil bath at $120^{\circ} \mathrm{C}$ for 12 h . The fragmented polymer was purified by repeated precipitation in water/methanol ($\mathrm{v} / \mathrm{v}=1 / 4$) and dried to give a pale brown-colored powder. The chemical structure and molecular weight of the original and fragmented $\mathbf{P} 7$ were evaluated by ${ }^{1}$ H NMR, FTIR and SEC analyses.
SEC (THF, $40^{\circ} \mathrm{C}$, PMMA standard): $\mathbf{P 7} M_{\mathrm{n}}=26300, M_{\mathrm{p}}=42800, ~ D=1.89, \mathbf{P} 7$ (fragment) $M_{\mathrm{n}}=9500, M_{\mathrm{p}}=13100, ~ D=1.18$ (Figure S16A).
Transmission-FTIR (cast film from CHCl_{3} onto CaF_{2}) (Figure S16B): P7 \& P7(fragment) $3430 \mathrm{~cm}^{-1}$ (v_{s} : CON-H), $3282 \mathrm{~cm}^{-1}$ ($\left.v_{\mathrm{s}}: \mathrm{CON}-\mathrm{H}\right), 2979 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}(\right.$ methylene $)$), $2934 \mathrm{~cm}^{-1}$ (v_{s} : C-H (methyl)), $2918 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methine)), $2873 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}\right.$: C-H (methyl)), $2851 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methylene) $), 1727 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}(=\mathrm{O}) \mathrm{O}\right), 1641 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 1541 \mathrm{~cm}^{-1}(\delta: \mathrm{CON}-\mathrm{H})$, $1479 \mathrm{~cm}^{-1}\left(\delta: \mathrm{C}-\mathrm{H}\right.$ (methylene)), $1452 \mathrm{~cm}^{-1}$ ($\delta: \mathrm{C}-\mathrm{H}$ (methyl) $), 1393 \mathrm{~cm}^{-1}$ ($\delta: t \mathrm{Bu}$ group), $1368 \mathrm{~cm}^{-1}$ ($\delta: t \mathrm{Bu}$ group).
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{TMS}$) (Figure S16C): $\mathbf{P} 7 \& \mathbf{P} 7$ (fragment) $0.45 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), 0.90 ppm (Leu, δ $\left.\mathrm{CH}_{3}, 24 \mathrm{H} ;>\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 1.05-2.40 \mathrm{ppm}(\mathrm{P} t \mathrm{BuA}, 9 n \mathrm{H}$, tert-butyl of side chain; $\mathrm{P} t \mathrm{BuA}, 2 n \mathrm{H}$, methylene of main chain; $\mathrm{P} t \mathrm{BuA}, n \mathrm{H}$, methine of main chain; $>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}$, enantiomer; $>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}$; Leu, $\gamma-\mathrm{CH}, 4 \mathrm{H} ;$ Leu, $\beta-\mathrm{CH}, 8 \mathrm{H}$; $\left.>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H} ; \mathrm{Asp}, \beta-\mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.80 \mathrm{ppm}\left(-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}-, 8 \mathrm{H}\right), 4.00 \mathrm{ppm}(\mathrm{Leu}, \alpha-\mathrm{CH}, 4 \mathrm{H}) 3.20-4.40 \mathrm{ppm}(-$ $\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ;-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH} \mathrm{H}_{2} \mathrm{O}-, 4 \mathrm{H}$; $-\mathrm{OCH}_{2} \mathrm{C}(=\mathrm{O})-, 4 \mathrm{H}$; Asp, $\alpha-\mathrm{CH}, 1 \mathrm{H}$), 6.80-7.80 ppm (TIPNO, 4H, aromatic ring; $-\mathrm{CONH} \mathrm{H}_{2}, 2 \mathrm{H}$; amide bonds of peptide, 9 H).

Deprotection of tert-butyl group of P7

P7 $20 \mathrm{mg}(0.76 \mu \mathrm{~mol})$ was dissolved in TFA/dichloromethane/TIS ($\mathrm{v} / \mathrm{v} / \mathrm{v}=8.5 / 1 / 0.5$) (30 mL) and stirred at room temperature for 12 h . After the reaction, the solvent was removed in vacuo to give a crude. Finally, objective deprotected P7, which composed of tetraleucine and poly(acrylic acid) (PAA), ([Leu $\left.u_{4}-b-\mathrm{PAA}\right]_{m}$), was obtained by reprecipitation from a methanol/diethylether system as a pale yellow-colored solid.
Transmission-FTIR (cast film from methanol onto CaF_{2}) (Figure S17A): $3429 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{COO}-\mathrm{H}, v_{\mathrm{s}}\right.$: CON-H), $3131 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}\right.$: $\mathrm{CON}-\mathrm{H}), 2949 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methylene)), $2879 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}\right.$: C-H (methine)), $2623 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{COO}-\mathrm{H}\right), 1708 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}(=\mathrm{O}) \mathrm{OH}\right)$, $1632 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 1564 \mathrm{~cm}^{-1}(\delta: \mathrm{CON}-\mathrm{H}), 1455 \mathrm{~cm}^{-1}(\delta: \mathrm{C}-\mathrm{H}$ (methylene)$)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, TMS) (Figure S17B): $0.50 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), 0.90 ppm (Leu, $\delta-\mathrm{CH}_{3}, 24 \mathrm{H}$; $\left.>\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 1.05-2.60 \mathrm{ppm}\left(\mathrm{PAA}, 2 n \mathrm{H}\right.$, methylene of main chain; PAA, $n \mathrm{H}$, methine of main chain; $>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}$, 3 H , enantiomer; $>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}$; Leu, $\gamma-\mathrm{CH}, 4 \mathrm{H}$; Leu, $\left.\beta-\mathrm{CH}_{2}, 8 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H} ; \mathrm{Asp}, \beta-\mathrm{CH} 2,2 \mathrm{H}\right), 3.40-4.70 \mathrm{ppm}(-$ $\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ;-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H}-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}-, 8 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H} ;-$ $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;-\mathrm{OCH}_{2} \mathrm{C}(=\mathrm{O})-4 \mathrm{H} ; \mathrm{Asp}, \alpha-\mathrm{CH}, 1 \mathrm{H}$; Leu, $\alpha-\mathrm{CH}, 4 \mathrm{H}$), 6.80-7.80 ppm (TIPNO, 4H, aromatic ring; $\mathrm{CONH}_{2}, 2 \mathrm{H}$; amide bonds of peptide, 9 H).

Synthesis and fragmentation of P8, [(Leu) $\left.)_{4}-b-\mathrm{PEA}\right]_{m}$

Ethyl acrylate (EA) $108.4 \mu \mathrm{~L}(1.0 \mathrm{mmol})$ and cyclic tetraleucine peptide initiator $12.3 \mathrm{mg}(0.010 \mathrm{mmol})$ dissolved in DMF $(41.2 \mu \mathrm{~L})$, and the mixture was poured into a glass test tube (monomer concentration: 6.2 M). The solution was deoxygenated using three freeze-pump-thaw cycles under dry N_{2}. Then the reaction mixture was placed in a preheated oil bath at $120^{\circ} \mathrm{C}$ for 25 h . After polymerization, the reaction tube was removed from the oil bath, rapidly cooled in liquid N_{2} and exposed to ambient air to stop the polymerization. The resulting polymer P8 was precipitated by dropping the polymer solutions into a large excess of petroleum ether/diethylether ($\mathrm{v} / \mathrm{v}=1 / 4$). After centrifugation, the obtained multiblock copolymer was further purified by a reprecipitation method from a DMF/(petroleum ether/diethyl ether) system. Fragmentation of P8 was carried out as follows, P8 $(10.0 \mathrm{mg}, 1.05 \mu \mathrm{~mol})$ and TIPNO $(22.0 \mathrm{mg}, 100 \mu \mathrm{~mol})$ were dissolved in N-methyl-2-pyrrolidone ($100 \mu \mathrm{~L}$), and the solution was poured into a test glass tube. The solution was deoxygenated by three freeze-pump-thaw cycles under dry N_{2}. The fragmentation reaction was then performed in a preheated oil bath at 120 ${ }^{\circ} \mathrm{C}$ for 12 h . The fragmented polymer was purified by repeated precipitation in a petroleum ether/diethyl ether ($\mathrm{v} / \mathrm{v}=1 / 4$) and dried to give a pale brown-colored powder. The chemical structure and molecular weight of the original and fragmented P8 were evaluated by ${ }^{1}$ H NMR, FTIR and SEC analyses.
SEC (THF, $40^{\circ} \mathrm{C}$, PMMA standard): P8 $M_{\mathrm{n}}=9500, M_{\mathrm{p}}=18400, ~ D=1.63$, P8(fragment) $M_{\mathrm{n}}=3700, M_{\mathrm{p}}=6200, ~ D=1.22$ (Figure S18A).
Transmission-FTIR (cast film from CHCl_{3} onto CaF_{2}) (Figure S18B): P8 \& P8(fragment) $3278 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{CON}-\mathrm{H}\right), 3080 \mathrm{~cm}^{-1}$ (v_{s} : CON-H), $2982 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}(\right.$ methylene $)$), $2958 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methyl)), $2874 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methine)), $1732 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}\right.$: $\mathrm{C}(=\mathrm{O}) \mathrm{O}), 1639 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 1543 \mathrm{~cm}^{-1}(\delta: \mathrm{CON}-\mathrm{H}), 1434 \mathrm{~cm}^{-1}(\delta: \mathrm{C}-\mathrm{H}$ (methylene)$), 1380 \mathrm{~cm}^{-1}(\delta: \mathrm{C}-\mathrm{H}$ (methyl)).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right)$ (Figure S18C): P8 \& P8(fragment) $0.50 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), 0.90 ppm (Leu, δ $\left.\mathrm{CH}_{3}, 24 \mathrm{H} ;>\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 1.05-2.40 \mathrm{ppm}(\mathrm{PEA}, 3 n \mathrm{H}$, methyl of side chain; PEA, $2 n \mathrm{H}$, methylene of main chain; PEA, $n \mathrm{H}$, methine of main chain; $>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}$, enantiomer; $>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}$; Leu, $\gamma-\mathrm{CH}, 4 \mathrm{H}$; Leu, $\beta-\mathrm{CH}_{2}, 8 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}$, 1 H ; Asp, $\left.\beta-\mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.80 \mathrm{ppm}\left(-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}-, 8 \mathrm{H}\right), 4.00 \mathrm{ppm}(\mathrm{Leu}, \alpha-\mathrm{CH}, 4 \mathrm{H}), 4.05 \mathrm{ppm}(\mathrm{PEA}, 2 n \mathrm{H}$, methylene of side chain), $3.20-4.10 \mathrm{ppm}\left(-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ;-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}\right.$, $1 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;-\mathrm{OCH}_{2} \mathrm{C}(=\mathrm{O})-, 4 \mathrm{H}$; Asp, $\alpha-\mathrm{CH}, 1 \mathrm{H}$), 6.80-7.80 ppm (TIPNO, 4 H , aromatic ring; - $\mathrm{CONH}, 2 \mathrm{H}$; amide bonds of peptide, 9 H).

Synthesis and fragmentation of P9, [(Leu) $\mathbf{4}_{4}$-b-PAN $]_{m}$

Acrylonitrile (AN) $65.6 \mu \mathrm{~L}(1.0 \mathrm{mmol})$ and cyclic tetraleucine peptide initiator $12.3 \mathrm{mg}(0.010 \mathrm{mmol})$ were dissolved in DMF ($88.8 \mu \mathrm{~L}$), and the mixture was poured into a glass test tube (monomer concentration: 6 M). The solution was deoxygenated using three freeze-pump-thaw cycles under dry N_{2}. Then the reaction mixture was placed in a preheated oil bath at $120^{\circ} \mathrm{C}$ for 16 h . After polymerization, the reaction tube was removed from the oil bath, rapidly cooled in liquid N_{2} and exposed to ambient air to stop the polymerization. The resulting polymer $\mathbf{P 9}$ was precipitated by dropping the polymer solutions into a large excess of diethyl ether. After centrifugation, the obtained multiblock copolymer was further purified by a reprecipitation method from a DMF/dithylether system. Fragmentation of P9 was carried out as follows, P9 (10.0 mg, $0.29 \mu \mathrm{~mol})$ and TIPNO ($22.0 \mathrm{mg}, 100 \mu \mathrm{~mol}$) were dissolved in N-methyl-2-pyrrolidone ($100 \mu \mathrm{~L}$), and the solution was poured into a test glass tube. The solution was deoxygenated by three freeze-pump-thaw cycles under dry N_{2}. The fragmentation reaction was then performed in a preheated oil bath at $120^{\circ} \mathrm{C}$ for 12 h . The fragmented polymer was purified by repeated precipitation in a diethyl ether and dried to give a pale brown-colored powder. The chemical structure and molecular weight of the original and fragmented P9 were evaluated by ${ }^{1} \mathrm{H}$ NMR, FTIR and SEC analyses.
SEC (DMF, $40^{\circ} \mathrm{C}$, PMMA standard): P9 $M_{\mathrm{n}}=34200, M_{\mathrm{p}}=43500, ~ D=1.54, \mathbf{P 9}$ (fragment) $M_{\mathrm{n}}=13400, M_{\mathrm{p}}=15200, ~ D=1.38$ (Figure S19A).
Transmission-FTIR (cast film from DMSO onto CaF_{2}) (Figure S19B): P9 \& P9(fragment): $3283 \mathrm{~cm}^{-1}$ (v_{s} : CON-H), 3069 $\mathrm{cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{CON}-\mathrm{H}\right), 2947 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methylene) $), 2872 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methine) $), 2242 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C} \equiv \mathrm{H}\right), 1644 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}\right.$: $\mathrm{C}(=\mathrm{O}) \mathrm{NH}), 1537 \mathrm{~cm}^{-1}(\delta: \mathrm{CON}-\mathrm{H}), 1453 \mathrm{~cm}^{-1}(\delta: \mathrm{C}-\mathrm{H}($ methylene $)), 1366 \mathrm{~cm}^{-1}(\delta: \mathrm{C}-\mathrm{H}$ (methyl)).
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, TMS) (Figure S19C): P9 \& P9 (fragment) $0.45 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), 0.85 ppm (Leu, $\left.\delta-\mathrm{CH}_{3}, 24 \mathrm{H} ;>\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 0.79-2.40 \mathrm{ppm}\left(\mathrm{PAN}, 2 n \mathrm{H}\right.$, methylene of main chain; $>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}$, enantiomer; $>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{HLeu}, \gamma-\mathrm{CH}, 4 \mathrm{H}$; Leu, $\beta-\mathrm{CH}_{2}, 8 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H}$; Asp, $\left.\beta-\mathrm{CH} \mathrm{H}_{2}, 2 \mathrm{H}\right), 3.20 \mathrm{ppm}(\mathrm{PAN}, n \mathrm{H}$, methine of main chain), $3.60 \mathrm{ppm}\left(-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}-, 8 \mathrm{H}\right), 3.85 \mathrm{ppm}(\mathrm{Leu}, \alpha-\mathrm{CH}, 4 \mathrm{H}), 3.00-4.70 \mathrm{ppm}\left(>-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H}\right.$; $\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;-\mathrm{OCH} \mathrm{H}_{2} \mathrm{C}(=\mathrm{O})-, 4 \mathrm{H} ; \mathrm{Asp}, \alpha-\mathrm{CH}$, $1 \mathrm{H}), 7.00-8.70 \mathrm{ppm}$ (TIPNO, 4 H , aromatic ring; $-\mathrm{CONH}_{2}, 2 \mathrm{H}$; amide bonds of peptide, 9 H).

Synthesis and fragmentation of P10, [(Leu) $)_{4}$-b-PSt $]_{m}$

Styrene (St) $115 \mu \mathrm{~L}(1.0 \mathrm{mmol})$ and cyclic tetraleucine peptide initiator $12.3 \mathrm{mg}(0.010 \mathrm{mmol})$ were dissolved in DMF $(41.2 \mu \mathrm{~L})$, and the mixture was poured into glass test tube (monomer concentration: 6 M). The solution was deoxygenated using three freeze-pump-thaw cycles under dry N_{2}. Then the reaction mixture was placed in a preheated oil bath at $110{ }^{\circ} \mathrm{C}$ for 72 h . After polymerization, the reaction tube was removed from the oil bath, rapidly cooled in liquid N_{2} and exposed to ambient air to stop the polymerization. The resulting polymer P10 was precipitated by dropping the polymer solutions into a large excess of methanol. After centrifugation, the obtained multiblock copolymer was further purified by a reprecipitation method from a DMF/methanol system. Fragmentation of P10 was carried out as follows, $\mathbf{P 1 0}$ ($10.0 \mathrm{mg}, 0.26 \mu \mathrm{~mol}$) and TIPNO ($22.0 \mathrm{mg}, 100 \mu \mathrm{~mol}$) were dissolved in N-methyl-2-pyrrolidone $(100 \mu \mathrm{~L})$, and the solution was poured into a test glass tube. The solution was deoxygenated by three freeze-pump-thaw cycles under dry N_{2}. The fragmentation reaction was then performed in a preheated oil bath at $110{ }^{\circ} \mathrm{C}$ for 12 h . The fragmented polymer was purified by repeated precipitation in methanol and dried to give a pale brown-colored powder. The chemical structure and molecular weight of the original and fragmented P10 were evaluated by ${ }^{1} \mathrm{H}$ NMR, FTIR and SEC analyses.
SEC (THF, $40^{\circ} \mathrm{C}$, PSt standard): P10 $M_{\mathrm{n}}=38800, M_{\mathrm{p}}=55000, D=1.77, \mathbf{P 1 0}$ (fragment) $M_{\mathrm{n}}=8400, M_{\mathrm{p}}=9100, D=1.10$ (Figure S20A).
Transmission-FTIR (cast film from CHCl_{3} onto CaF_{2}) (Figure S20B): $\mathbf{P 1 0} \& \mathbf{P 1 0}$ (fragment) $3274 \mathrm{~cm}^{-1}$ (v_{s} : CON-H), 3101 cm^{-1} (v_{s} : CON-H), $3083 \mathrm{~cm}^{-1}$ (v_{s} : C-H (phenyl)), $3061 \mathrm{~cm}^{-1}$ (v_{s} : C-H (phenyl)), $3026 \mathrm{~cm}^{-1}$ ($v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}$ (methylene)), $3001 \mathrm{~cm}^{-1}$ (v_{s} : C-H (methyl)), $2925 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methylene) $), 2851 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}-\mathrm{H}\right.$ (methine)), $1944 \mathrm{~cm}^{-1}\left(\delta: \mathrm{C}-\mathrm{H}\right.$ (phenyl)), $1873 \mathrm{~cm}^{-1}$ ($\delta: \mathrm{C}-\mathrm{H}($ phenyl $)$), $1803 \mathrm{~cm}^{-1}\left(\delta: \mathrm{C}-\mathrm{H}(\right.$ phenyl $), 1745 \mathrm{~cm}^{-1}(\delta: \mathrm{C}-\mathrm{H}($ phenyl $)), 1633 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 1600 \mathrm{~cm}^{-1}\left(v_{\mathrm{s}}: \mathrm{C}=\mathrm{C}\right.$ (phenyl)), $1539 \mathrm{~cm}^{-1}$ ($\left.\delta: \mathrm{CON}-\mathrm{H}\right), 1493 \mathrm{~cm}^{-1}(\delta: \mathrm{C}-\mathrm{H}$ (methylene)).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right)$ (Figure S20C): $\mathbf{P 1 0} \& \mathbf{P 1 0}$ (fragment) $0.50 \mathrm{ppm}\left(>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}\right.$, enantiomer), 0.85 ppm (Leu, $\left.\delta-\mathrm{CH}_{3}, 24 \mathrm{H} ;>\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right), 1.10-2.40 \mathrm{ppm}(\mathrm{PSt}, 2 n \mathrm{H}$, methylene of main chain; PSt, $n \mathrm{H}$, methine of main chain; $>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{H}$, enantiomer; $>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}$; Leu, $\gamma-\mathrm{CH}, 4 \mathrm{H}$; Leu, $\left.\beta-\mathrm{CH}_{2}, 8 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H} ; \mathrm{Asp}, \beta-\mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.70$ ppm $\left(-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}-, \quad 8 \mathrm{H}\right), \quad 3.95 \mathrm{ppm} \quad(\mathrm{Leu}, \quad \alpha-\mathrm{CH}, \quad 4 \mathrm{H}), 2.80-4.10 \mathrm{ppm} \quad\left(-\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, \quad 2 \mathrm{H} ;-\right.$ $\mathrm{OC}(=\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-, 2 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;>\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, 1 \mathrm{H} ;-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H} ;-\mathrm{OCH} \mathrm{C}_{2} \mathrm{C}(=\mathrm{O})-, 4 \mathrm{H} ; \mathrm{Asp}, \alpha-\mathrm{CH}$, $1 \mathrm{H}), 6.30-7.80 \mathrm{ppm}\left(\mathrm{PSt}, 5 n \mathrm{H}\right.$, phenyl; TIPNO, 4 H , aromatic ring; $-\mathrm{CONH}_{2}, 2 \mathrm{H}$; amide bonds of peptide, 9 H).

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $N-F m o c-N{ }^{\prime}-$ Boc- $E D A$ in acetone $-d_{6}$ at $25^{\circ} \mathrm{C}$.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{N}-\mathrm{Fmoc}-E D A \cdot \mathrm{HCl}(1)$ in $\mathrm{DMSO}-d_{6}$ at $25^{\circ} \mathrm{C}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of Fmoc- $E D A-\mathrm{Br}(2)$ in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of N -tert-butyl- α-isopropylnitrone (3) in CDCl_{3} at $25^{\circ} \mathrm{C}$

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of tert-butyl 4-iodobenzoate (4) in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Figure S6. A. DART MS spectrum of TIPNO-COOtBu, free radical (5). Ionization temperature: $300^{\circ} \mathrm{C}$. B. ESR spectrum of 5 in CHCl_{3} at $-196^{\circ} \mathrm{C}$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of Fmoc-NH-TIPNO-COOtBu (6) in acetone- d_{6} at $25^{\circ} \mathrm{C}$.

(q) (o)

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Fmoc}-\mathrm{NH}-\mathrm{TIPNO}-\mathrm{COOH}(\mathbf{7})$ in DMSO- d_{6} at $25^{\circ} \mathrm{C}$.

Figure S9. Turbidity measurements of P5 (solid line) and PNIPAM homopolymer $\left(M_{\mathrm{n}}=74000 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ (dashed line) in water at 600 nm . [Polymer]=1 $\mathrm{wt} \%$.

Figure S10. Transmission-FTIR spectra of $\mathbf{P 2}$ (blue) and fragmented $\mathbf{P 2}$ (red) casted from the CHCl_{3} solution onto a CaF_{2} plate.

Figure S11. Characterization of the multiblock P1. A. SEC traces (THF, $40^{\circ} \mathrm{C}$) of the multiblock P1 obtained before (blue) and after (red) fragmentation showing a clear shift towards a lower molecular weight. B. Transmission-FTIR spectra of P1 (blue) and fragmented P1 (red) casted from the CHCl_{3} solution onto a CaF_{2} plate. C. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{P 1}$ (blue) and fragmented $\mathbf{P 1}$ (red) in CDCl_{3} at $25^{\circ} \mathrm{C}$. \mathbf{D}. CD spectra of $\mathbf{P 1}$ (blue) and fragmented $\mathbf{P 1}$ (red) in water at $25^{\circ} \mathrm{C}$.

Figure S12. Characterization of the multiblock P3. A. SEC traces (THF, $40^{\circ} \mathrm{C}$) of the multiblock P3 obtained before (blue) and after (red) fragmentation showing a clear shift towards a lower molecular weight. B. Transmission-FTIR spectra of P3 (blue) and fragmented P3 (red) casted from the CHCl_{3} solution onto a CaF_{2} plate. C. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{P} 3$ (blue) and fragmented $\mathbf{P} 3$ (red) in CDCl_{3} at $25^{\circ} \mathrm{C}$. D. CD spectra of $\mathbf{P} 3$ (blue) and fragmented P3 (red) in water at $25^{\circ} \mathrm{C}$.

Figure S13. Characterization of the multiblock P4. A. SEC traces (THF, $40^{\circ} \mathrm{C}$) of the multiblock P4 obtained before (blue) and after (red) fragmentation showing a clear shift towards a lower molecular weight. B. Transmission-FTIR spectra of P4 (blue) and fragmented P4 (red) casted from the CHCl_{3} solution onto a CaF_{2} plate. C. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{P 4}$ (blue) and fragmented $\mathbf{P 4}$ (red) in CDCl_{3} at $25^{\circ} \mathrm{C}$. D. CD spectra of $\mathbf{P 4}$ (blue) and fragmented $\mathbf{P 4}$ (red) in water at $25^{\circ} \mathrm{C}$.

Figure S14. Characterization of the multiblock P5. A. SEC traces (THF, $40^{\circ} \mathrm{C}$) of the multiblock P5 obtained before (blue) and after (red) fragmentation showing a clear shift towards a lower molecular weight. B. Transmission-FTIR spectra of P5 (blue) and fragmented P5 (red) casted from the CHCl_{3} solution onto a CaF_{2} plate. C. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{P 5}$ (blue) and fragmented P 5 (red) in CDCl_{3} at $25^{\circ} \mathrm{C}$. D. CD spectra of $\mathbf{P} 5$ (blue) and fragmented $\mathbf{P 5}$ (red) in water at $25^{\circ} \mathrm{C}$.

Figure S15. Characterization of the multiblock P6. A. SEC traces (THF, $40^{\circ} \mathrm{C}$) of the multiblock P6 obtained before (blue) and after (red) fragmentation showing a clear shift towards a lower molecular weight. B. Transmission-FTIR spectra of P6 (blue) and fragmented P6 (red) casted from the CHCl_{3} solution onto a CaF_{2} plate. C. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{P 6}$ (blue) and fragmented $\mathrm{P6}$ (red) in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Figure S16. Characterization of the multiblock P7. A. SEC traces (THF, $40^{\circ} \mathrm{C}$) of the multiblock P7 obtained before (blue) and after (red) fragmentation showing a clear shift towards a lower molecular weight. B. Transmission-FTIR spectra of P7 (blue) and fragmented P7 (red) casted from the CHCl_{3} solution onto a CaF_{2} plate. C. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{P 7}$ (blue) and fragmented $\mathbf{P 7}$ (red) in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Figure S17. A. Transmission-FTIR spectrum of P7 obtained after treatment with TFA casted from the MeOH solution onto a CaF_{2} plate. B. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{P} 7$ obtained after treatment TFA in $\mathrm{CD}_{3} \mathrm{OD}$ at $25^{\circ} \mathrm{C}$.

Figure S18. Characterization of the multiblock P8. A. SEC traces (THF, $40^{\circ} \mathrm{C}$) of the multiblock P8 obtained before (blue) and after (red) fragmentation showing a clear shift towards a lower molecular weight.
B. Transmission-FTIR spectra of P8 (blue) and fragmented P8 (red) casted from the CHCl_{3} solution onto a CaF_{2} plate. C. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{P 8}$ (blue) and fragmented $\mathbf{P 8}$ (red) in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Figure S19. Characterization of the multiblock P9. A. SEC traces (DMF, $40^{\circ} \mathrm{C}$) of the multiblock P9 obtained before (blue) and after (red) fragmentation showing a clear shift towards a lower molecular weight. Transmission-FTIR spectra of P9 (blue) and fragmented P9 (red) casted from the DMSO solution onto a CaF_{2} plate. C. ${ }^{1} \mathrm{H}$ NMR spectra of P9 (blue) and fragmented P9 (red) in DMSO- d_{6} at $25^{\circ} \mathrm{C}$.

Figure S20. Characterization of the multiblock P10. A. SEC traces (THF, $40{ }^{\circ} \mathrm{C}$) of the multiblock P10 obtained before (blue) and after (red) fragmentation showing a clear shift towards a lower molecular weight. B. Transmission-FTIR spectra of P10 (blue) and fragmented $\mathbf{P 1 0}$ (red) casted from the CHCl_{3} solution onto a CaF_{2} plate. C. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{P 1 0}$ (blue) and fragmented $\mathbf{P 1 0}$ (red) in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum of NAAMe in DMSO- d_{6} at $25^{\circ} \mathrm{C}$.

