Electronic Supplementary Information

Aqueous cationic homo- and co-polymerizations of β-myrcene and styrene: a green route toward terpene-based rubbery polymers

Maksim I. Hulnik, ^a Irina V. Vasilenko, ^a Alexei V. Radchenko, ^b Frédéric Peruch, ^b Francois Ganachaud^c and Sergei V. Kostjuk ^{a,c,d,e,*}

^a Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya st., 220006 Minsk, Belarus. E-mail: <u>kostjuks@bsu.by</u> or <u>kostjuks@rambler.ru</u>.
^b Laboratoire de Chimie des Polymères Organiques, UMR 5629 CNRS/UB1/IPB University of Bordeaux, 16 avenue Pey Berland, 33607 Pessac Cedex, France.
^c INSA-Lyon, IMP, CNRS, UMR5223, 20 Boulevard Einstein, F-69621 Villeurbanne, France.
^d Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, 119991, Russia.
^e Department of Chemistry, Belarusian State University, 14 Leningradskaya st., 220006 Minsk,

Belarus

Contents

Table S1. Cationic polymerization of β -myrcene under different conditionsP. 3

Table S2. Copolymer composition for copolymerization of β -myrcene with styrene at 40°C and at different monomer conversions P. 3

Fig. S1. (a) Conversion vs. time and (b) M_n , M_w/M_n vs. conversion plots for β -myrcene (Myr) and isoprene (IP) polymerization at 40 °C in the presence of LASC prepared from YbCl₃×6H₂O and branched DBSNa: YbCl₃×6H₂O: 0.21 g; H₂O: 3.5g; monomer: 1.5 mL; DBSNa: 0.78 g. P. 3

Fig. S2. Optical micrographs of emulsions generated upon addition of β -myrcene (**a**, **b**, **c**) and isoprene (**d**, **e**, **f**) to LASC solution in water after agitation during 10 min (**a**, **d**) and then 10 min (**b**, **e**) and 60 min (**c**, **f**) after stopping the agitation. P. 4

Fig S3. Size distribution of emulsions of β -myrcene and isoprene as determined by optical microscopy and image analyses (see main text for details). P. 5

Fig. S4. ¹H - ¹H COSY 2D NMR spectrum of synthesized poly(β -myrcene). P. 5

P. 6

Fig. S5. ¹³C NMR spectrum of synthesized poly(β-myrcene).

Fig. S6. DSC thermogram of $poly(\beta$ -myrcene) obtained via LASC mediated emulsion polymerization of β -myrcene (see Table 1 for details). P. 6

Fig. S7. (a) Conversion vs. time and (**b**) M_n , M_w/M_n vs. conversion plots for homopolymerization of β -myrcene, styrene as well as copolymerization of β -myrcene and styrene (monomer ratio is 50:50 mol/mol) at 40 °C in the presence of LASC prepared from YbCl₃×6H₂O and branched DBSNa: YbCl₃×6H₂O: 0.21 g; H₂O; 3.5g; monomer: 1.5 mL; DBSNa: 0.78 g. P. 7

Fig. S8. SEC traces of poly(β -myrcene-*co*-styrene) at different monomer conversions for copolymers synthesized at β -myrcene : styrene ratio (mol/mol) (**a**) 75:25 (**b**) 25:75. P. 7

Fig S9. Size distribution of emulsions of β -myrcene and styrene as determined by optical microscopy and image analyses (see main text for details). P. 8

Fig. S10. Particle size distributions as determined by dynamic light scattering of emulsions of β -myrcene, styrene and their mixtures with LASC, analyzed during the induction period prior to polymerization. P. 8

Fig. S11. ¹H NMR spectrum of poly(β -myrcene-*co*-styrene) obtained at Myr: St ratio of 50: 50 mol/mol.

Fig. S12. ¹³C NMR spectrum of poly(β -myrcene-*co*-styrene) obtained at Myr: St ratio of 50: 50 mol/mol. P. 9

Fig. S13. DSC thermograms of poly(β -myrcene-*co*-styrene) obtained at different Myr: St ratios. Myr: St ratio (from top to bottom) of 75: 25; 50: 50, 40:60 and 25: 75 mol/mol, respectively. P.10

Fig. S14. The X-ray diffraction pattern of inorganic salt containing in DBSNa.P.11

Fig. S15. The X-ray diffraction pattern of ytterbium salt after its recovery from reaction mixture and treatment by aqueous HCl (run R3*, Table 3). P.12

Fig. S16. The X-ray diffraction pattern of ytterbium salt after its second recovery from reaction mixture (run R2, Table 3). P.12

Entry	T (°C)	Time (h)	Conv. (%)	M_n (g mol ⁻¹)	M _w /M _n
1	40	19	95	164000	4.2
2 ^b	40	19	0	-	-
3	30	19	0	-	-

Table S1. Cationic polymerization of β -myrcene under different conditions^a

^a YbCl₃×6H₂O: 0.21 g; H₂O; 3.5g; β-myrcene : 1.5 mL; DBSNa: 0.78 g.

^b Without YbCl₃×6H₂O.

Table S2. Copolymer composition for copolymerization of β -myrcene with styrene at 40°C and at different monomer conversions ^a

Entry	Time (h)	Conv. (%)	Myr:St (mol%) ^b
1	12	28	82:18
2	12.5	74	79:21
3	13	99	75:25

^a YbCl₃×6H₂O: 0.21 g; H₂O; 3.5g; monomers: 1.5 mL; DBSNa: 0.78 g;

Myr: St =50:50 (in comonomers feed).

^b In copolymer, determined by ¹H NMR spectroscopy.

Fig. S1. (a) Conversion vs. time and (b) M_n , M_w/M_n vs. conversion plots for β -myrcene (Myr) and isoprene (IP)¹ polymerization at 40°C in the presence of LASC prepared from YbCl₃×6H₂O and branched DBSNa: YbCl₃×6H₂O: 0.21 g; H₂O: 3.5 g; monomer: 1.5 mL; DBSNa: 0.78 g.

¹ I. V. Vasilenko, H. Y. Yeong, M. Delgado, S. Ouardad, F. Peruch, B. Voit, F. Ganachaud, and S. V. Kostjuk, Angew. Chem., Int. Ed. 2015, 54, 12728.

Fig. S2. Optical micrographs of emulsions generated upon addition of β -myrcene (**a**, **b**, **c**) and isoprene (**d**, **e**, **f**) to LASC solution in water after agitation during 10 min (**a**, **d**) and then 10 min (**b**, **e**) and 60 min (**c**, **f**) after stopping the agitation.

Fig S3. Size distribution of emulsion of β -myrcene or isoprene as determined by optical microscopy and image analyses (see main text for details).

Fig. S4. ¹H - ¹H COSY 2D NMR spectrum of synthesized poly(β -myrcene) (M_n=164,000 g mol⁻¹; M_w/M_n=2.7).

Fig. S5. ¹³C NMR spectrum of synthesized poly(β -myrcene) (M_n=164,000 g mol⁻¹; M_w/M_n=2.7).

Fig. S6. DSC thermogram of $poly(\beta$ -myrcene) obtained via LASC mediated emulsion polymerization of β -myrcene (see Table 1 for details).

Fig. S7. (a) Conversion vs. time and (b) M_n , M_w/M_n vs. conversion plots for homopolymerization of β -myrcene, styrene as well as copolymerization of β -myrcene and styrene (molar monomer content is 50 : 50) at 40°C in the presence of LASC prepared from YbCl₃×6H₂O and branched DBSNa: YbCl₃×6H₂O: 0.21 g; H₂O; 3.5g; monomer: 1.5 mL; DBSNa: 0.78 g.

Fig. S8. SEC traces of poly(β -myrcene-*co*-styrene) at different (and normalized by) monomer conversions for copolymers synthesized at molar β -myrcene : styrene ratio of (a) 75 : 25 and (b) 25 : 75.

Fig S9. Size distribution of emulsions of β -myrcene/styrene mixtures as determined by optical microscopy and image analyses (see main text for details).

Fig. S10. Particle size distributions as determined by dynamic light scattering of emulsions of β -myrcene, styrene and their mixtures with LASC, analyzed during the induction period prior to polymerization.

Fig. S11. ¹H NMR spectrum of poly(β -myrcene-*co*-styrene) obtained at Myr : St ratio of 50 : 50 mol/mol.

Fig. S12. ¹³C NMR spectrum of poly(β -myrcene-*co*-styrene) obtained at Myr : St ratio of 50 : 50 mol/mol.

Fig. S13. DSC thermograms of poly(β -myrcene-*co*-styrene)s obtained at different Myr : St molar ratios (from top to bottom): 75 : 25; 50 : 50, 40 : 60 and 25 : 75.

N (S) (2018)		13:38	09.07.18
Number of observed lines: 51	Kp Cu 2umin- 5.0°	2umax= 75.0"	error: .2°
Searched phases: inorganic Zz	[Zz], where 2s	- any element	

Fitting parameters:

PD	PDD	PDI	LD/LW	SKALA	I/Ic	Q	Card +	Chemical formula (mineral name)
.84 1.29	1.36 1.34	.34 .44	33/40 26/28	1.00	1.80 1.50	*	24-1132 5- 631	Na2 S 04 Na2 S 04 THENARDITE SYN

Fig. S14. X-ray diffraction pattern of inorganic salt contained in DBSNa.

Fig. S15. X-ray diffraction pattern of ytterbium salt after its recovery from reaction mixture and treatment by aqueous HCl (run R3*, Table 3).

Fig. S16. X-ray diffraction pattern of ytterbium salt after its second recovery from reaction mixture (run R2, Table 3).