Supporting Information

Synthesis of Carbazole-based Microporous Polymer Networks via Oxidative Coupling Mediated Self-assembly Strategy: From Morphology Regulation to Application Analysis

Yang Xu, Tianqi Wang, Buyin Shi, Shengguang Gao, Guojie Meng and Kun Huang*

Department: School of Chemistry and Molecular Engineering.

Institution: East China Normal University

Address: 500N, Dongchuan Road, Shanghai, 200241, P. R. China.

E-mail: khuang@chem.ecnu.edu.cn

Fig. S1 ¹H NMR characterization of PLA_x-b-PNVC_y: (1) x=184, y=400; (2) x=184, y=190; (3) x=184, y=70.

Fig. S2 GPC traces recorded for (a) PLA₁₈₄-b-PNVC₇₀, (b) PLA₁₈₄-b-PNVC₁₉₀ and (c) PLA₁₈₄-b-PNVC₄₀₀.

Fig. S3 ¹³C NMR characterization of PLA_x-b-PNVC_y: (1) x=184, y=400; (2) x=184, y=190; (3) x=184, y=70.

Fig. S4 ¹³C CP/MAS NMR characterization of (1) S-C-MPNs, (2) B-C-MPNs and (3) H-C-MPNs, repectively.

Fig. S5 TGA curves of PLA-b-PNVC (x=184, y=190) and H-C-MPNs.

Fig. S6 FT-IR spectra of (A) PLA₁₈₄-b-PNVC₇₀, (B) PLA₁₈₄-b-PNVC₁₉₀, (C) PLA₁₈₄-b-PNVC₄₀₀ polymer and the corresponding (D) S-C-MPNs, (E) B-C-MPNs and (F) H-C-MPNs, repectively.

Fig. S7 TEM images of B-C-MPNs with different oxidative coupling times.

Fig. S8 TEM image of the sample from PLA_{184} -b-PNVC₃₀₀ precursor.

Fig. S9 TEM image of the sample from PLA₉₀-b-PNVC₉₅ precursor.

Fig. S10 TEM images of the obtained oxidative coupling polymers from different molar ratio of $FeCl_3$ to carbazole unit of PLA_{184} -b-PNVC₁₈₄: (A) ratio = 2; (B) ratio = 8.

Fig. S11 Reusability of H-C-MPNs for iodine adsorption.

Fig. S12 TEM image of Pd@H-C-MPNs.

Fig. S13 TEM image of Pd@H-N-PCNs after recycle used.

Fig. S14 TEM image of Pd@S-N-PCNs.

Fig. S15 TEM image of Pd@B-N-PCNs.

Fig. S16 (A) N₂ adsorption/desorption isotherms and (B) NLDFT pore size distribution of Pd@H-N-PCNs, Pd@B-N-PCNs and Pd@S-N-PCNs, respectively.

Fig. S17 Recycling tests of Pd@H-N-PCNs for quinolin selective hydrogenation.

Fig. S18 N_2 adsorption/desorption isotherms and NLDFT pore size distribution of Pd@H-N-PCNs after recycle used.

Sample	Content (%)						
	N	С	Н	C:N	C:N by NMR		
PLA ₁₈₄ -b-PNVC ₇₀	3.49	62.20	5.78	17.82	17.71		
PLA ₁₈₄ -b-PNVC ₁₉₀	5.15	78.70	5.46	15.28	14.49		
PLA ₁₈₄ -b-PNVC ₄₀₀	6.01	81.58	5.15	13.57	13.18		
S-C-MPNs	8.78	82.31	7.12	9.37			
B-C-MPNs	8.65	84.73	6.99	9.80			
H-C-MPNs	8.46	85.66	5.87	10.13			
S-N-PCNs	5.32	92.02		17.30			
B-N-PCNs	5.05	90.36		17.89			
H-N-PCNs	5.10	90.15		17.68			

 Table S1.
 Elemental analysis of various materials.

 Table S2.
 Comparison of the iodine adsorption performance of selected outstanding absorbents reported in the literature.

Absorbents	T (°C)	lodine (g/g)	Ref.
NiP-CMPs	77	2.02	Chem. Commun. 2014 , 50, 8495-8498.
PAF-1	25	1.86	<i>J. Mater. Chem. A</i> , 2014 , 2, 7179-7187.
CMPN-3	70.3	2.08	<i>J. Mater. Chem. A</i> , 2015 , 3, 87-91.
PAF-24	75	2.76	Angew. Chem. Int. Ed, 2015 , 54, 12733- 12737.
Azo-Trip	77	2.33	Polym. Chem., 2016, 7, 643-647.
SCMP-2	80	2.22	ACS Appl. Mater. Interfaces, 2016 , 8, 21063-21069.
NTP	75	1.80	<i>ACS Macro Lett.</i> , 2016 , 5, 1039-1043.
AzoPPN	77	2.90	<i>Chem. Eur. J.</i> , 2016 , 22(33), 11863-11868.
NCMP1	85	2.15	<i>ACS Appl. Mater.</i> <i>Interfaces</i> , 2017 , 1944-8244.
NRPP-2	80	2.22	ACS Appl. Mater. Interfaces, 2018, 10,

			16049-16058.
MFM-300(Sc)	80	1.54	<i>J. Am. Chem. Soc.</i> 2017 , 139, 16289- 16296.
HCNPs	80	3.36	<i>Macromolecules,</i> 2016 , 49, 6322-6333.
Cu-BTC	75	1.75	Chem. Mater. 2013, 25, 2591-2596.
H-C-MPNs	75	2.90	This work

Table S3. Catalytic activities comparison for the selective hydrogenation of nitrobenzene

 catalyzed by selected outstanding heterogeneous catalysts.

Catalysts	Hydrogen	Reaction	Time	Recycle	Yield	TOF	References.
	sources	conditions		runs	(%)	(h-1)	
Pd/H ₂ N-SiO ₂ /Fe ₂ O ₃	1 atm of H ₂	2-propanol,	90	14	99		Chem. Mater.,
		Pd (2 µmol)	min	(87%)			2006 , 18, 2459
		room					
		temperature					
Pd/HS-SiO ₂ /Fe ₂ O ₃	1 atm of H ₂	2-propanol,	290	14	99		Chem. Mater.,
		Pd (2 µmol)	min	(76%)			2006 , 18, 2459
		room					
		temperature					
SiO ₂ -BisILs[PF ₆]-	1 atm of H ₂	Pd (5 µmol)	8.5 h	15	100		ACS Catal.,
Pd ⁰		room					2011 , 1, 657.
		temperature					
Pd/PEG4000	1 atm of H ₂	Catalyst (100	180	10	100	83	J.Catal.,
		mg)	min	(67%)			2012 , 286,184.
		room					
		temperature					
Co@Pd/NC	1 atm of H ₂	EtOAc,	45	7	98		ACS Catal.,
		Pd (0.2 mol%)	min	(~80%)			2015 , 5, 5264

		room					
		temperature					
Pt/ZSM-5	1.0 MPa H ₂	EtOH,	60		100		ACS Catal.,
		Catalyst (100					2015 , 5, 6893
		mg)					
		80 °C					
Ru@C ₆₀	30 bar of	EtOH,	4 h		90	55.7	ACS Catal.,
	H ₂	Catalyst (5 mg)					2016 . 6. 6018
	-	80 °C					, -,
Pd-H-MOF-5	1 atm of H ₂	EtOH,	1.5 h		95.6		Chem. Sci.,
		Catalyst (0.01					2016 , 7, 7101
		equiv)					
		60 °C					
Pd/TiO ₂ -NH ₃	0.25 vol %	Catalyst (10	240		100	876	ACS Catal.,
	NB, 2.5 vol	mg)	min				2017 , 7, 1197
	%, He	200 °C					
	balance						
Co-Mo-S	11 bar of	Toluene	7 h	7	99		ACS Catal
	н	Catalvet (4.9					2017 7 2608
	112						2017, 7, 2090
		mg)					
		150 °C					
Zr ₁₂ -TPDC-Co	40 bar of	Toluene,	42 h	8	100		J. Am. Chem.
	H ₂	Catalyst (0.5					Soc., 2017 , 139,
		mg)					7004
		110 ºC					
LaCu _{0.67} Si _{1.33}	3.0 MPa H ₂	2-propanol,	9 h	10	100		J. Am. Chem.
		Catalyst (50					Soc., 2017 , 139,
		mg)					17089
		120 °C					
	10 har of		60	F	100	11000	ACS Cotol
Fu/FFN3@FDU-12				5		11020	
	H ₂	Pa (8 x 10 ⁻³	min				2018 , 8, 6476
		mmol)					
		60 °C					

(MeCp)PtH/Zn/SiO ₂	50 psi H ₂	Toluene,	24 h	3	99		J. Am. Chem.
		Pd (0.04 mol%)					Soc., 2018 , 140,
		40 °C					3940
Fe ₃ O ₄ @N-C@Pd	NaBH₄	H ₂ O:EtOH	45	10	81	108	J.Catal.,
Y-S(B)		(1:1),	min	(94%)			2018 , 364, 69.
		Pd (1 mol%)					
		room					
		temperature					
Co-SiCN	5.0 MPa H ₂	H ₂ O:EtOH	15 h	5	99		Angew. Chem.
		(4:1),					Int. Ed. 2016 ,
		Co (0.024					55, 15175
		mmol)					
		110 ºC					
Pd/C@HCS-H ₂ O ₂	10 bar of	Cyclohexane,	30	6 (47%)	100		Chem. Mater.,
	H ₂	Catalyst (50	min				2018, 30, 2483
		mg)					
		120 °C					
Pd@HBPs-1	1 atm of H ₂	EtOH,	60	8	100	167	Macromolecules
		Pd (0.6 mol%)	min				2017 , 50, 9626
		room					
		temperature					
Pd@H-N-PCNs	1 atm of H_2	EtOH,	30	15	100	833	This work
		Pd (0.0012	min	(92%)			
		mmol)					
		room					
		temperature					

¹H NMR data for compounds of the hydrogenation products.

Aniline

¹H NMR (500 MHz, CDCl₃): δ 7.19 (t, J = 8.0 Hz, 2H); 6.83 (t, J = 7.5 Hz, 1H); 6.73 (d, J = 7.5 Hz,

2H); 3.66 (s, 2H). Isolated yield= 99%.

p-Toluidine:

¹H NMR (500 MHz, CDCl₃): δ 6.96 (d, J = 8.0 Hz, 2H), 6.61 (d, J = 8.0 Hz, 2H), 3.48 (w, 2H), 2.24

(s, 3H). Isolated yield= 99%.

4-Chloroaniline

¹H NMR (500 MHz, CDCl₃): δ 7.10 (d, J = 6.5 Hz, 2H); 6.60 (d, J = 6.5 Hz, 2H); 3.65 (s, 2H).

Isolated yield= 99%.

2-Chloroaniline

¹**H NMR (500 MHz, CDCl₃):** δ 7.15 (m, 2H); 6.77 (d, J = 7.5 Hz, 2H); 4.10 (bs, 2H). Isolated yield= 90%.

4-Aminoanisole

¹**H NMR (500 MHz, CDCl₃):** δ 6.77 (d, J = 8.0 Hz, 2H); 6.58 (d, J = 8.0 Hz, 2H); 3.75 (s, 3H); 3.13

(bs, 2H). Isolated yield= 98%.

1,2,3,4-Tetrahydroquinoline

¹**H NMR (500 MHz, CDCl₃):** δ 6.91-6.42 (m, 4H); 3.84 (s, 1H); 3.24 (t, J = 8.0 Hz, 2H); 2.71 (t, J = 8.0 Hz, 2H); 1.89 (q, J = 8.0 Hz, 2H). Isolated yield: Pd@H-N-PCNs, 92%; Pd@B-N-PCNs, 82%; Pd@S-N-PCNs, 78%.

5,6,7,8-Tetrahydroquinoline

¹**H NMR (500 MHz, CDCl₃):** δ 8.29 (m, 1H); 7.29 (d, J = 9.5 Hz, 1H); 7.00 (m, 1H); 2.88 (t, J = 8.0 Hz, 2H); 2.75 (t, J = 8.0 Hz, 2H); 1.89 (m, 2H); 1.78 (m, 2H). Isolated yield: Pd@H-N-PCNs, 8%; Pd@B-N-PCNs, 18%; Pd@S-N-PCNs, 22%.

