Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2018

## **Electronic Supplementary Information**

## Tryptophan-Based Styryl Homopolymer and Polyzwitterions with Solvent-Induced UCST, Ion-Induced LCST and pH-Induced UCST

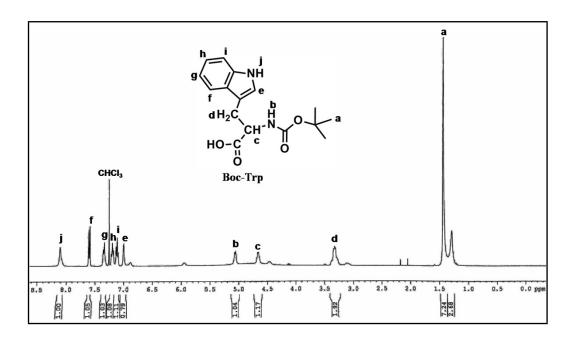
Somdeb Jana<sup>§</sup>, Mahammad Anas<sup>§</sup>, Tanmoy Maji, Sanjib Banerjee<sup>‡</sup> and Tarun K. Mandal\*

Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata

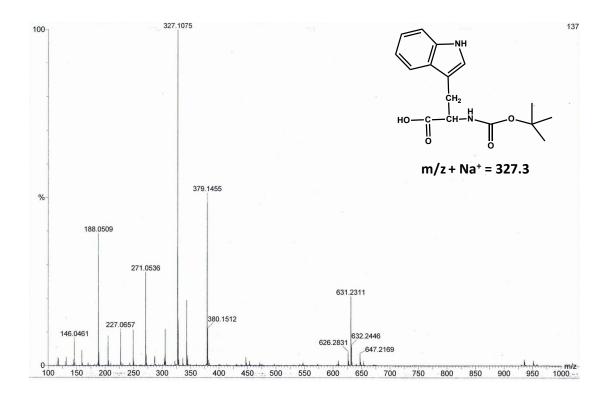
700 032, India

| Contents    |                                                                                       | Page No.   |
|-------------|---------------------------------------------------------------------------------------|------------|
| Scheme S1.  | Synthesis of poly(TrpVBz) <sub>50</sub> by deprotected poly(Boc-TrpVBz) <sub>50</sub> | <b>S</b> 1 |
| Table S1.   | Effect of water percentage in different mixed solvents.                               | S2         |
| Table S2.   | Effect of molecular weightin different mixed solvents.                                | S3         |
| Figure S1.  | <sup>1</sup> H-NMR spectrum of Boc-tryptophan                                         | S3         |
| Figure S2.  | ESI-Mass spectrum of Boc-tryptophan (Boc-Trp)                                         | S4         |
| Figure S3.  | <sup>1</sup> H-NMR spectrum of present in CDCl <sub>3</sub> .                         | S4         |
| Figure S4.  | <sup>13</sup> C-NMR spectrum of (Boc-TrpVBz).                                         | S5         |
| Figure S5.  | ESI-Mass spectrum of(Boc-TrpVBz)                                                      | S5         |
| Figure S6.  | <sup>1</sup> H-NMR spectrum of poly(Boc-TrpVBz) in DMSO-d <sub>6</sub> .              | S6         |
| Figure S7.  | FTIR spectrum monomer                                                                 | S6         |
| Figure S8.  | MALDI-TOF-MS spectrum[poly(Boc-TrpVBz) <sub>8</sub> ].                                | S7         |
| Figure S9   | Variation of %T of solutions of and (C) DMF-water (31%).                              | S8         |
| Figure S10. | Variation of $D_h$ varying water content.                                             | S9         |
| Figure S11. | Turbidity curves (at $\lambda = 600 \text{ nm}$ ) of poly(Boc-TrpVBz)                 | S9         |
| Figure S12. | Turbidity curves (at $\lambda = 600 \text{ nm}$ ) of poly(Boc-TrpVBz) <sub>50</sub>   | S10        |
| Figure S13. | Turbidity curves for varying concentration of poly(Boc-TrpVBz) <sub>50</sub>          | S11        |
| Figure S14. | The plot of % transmittance (at $\lambda = 600$ nm)at different pHs.                  | S11        |
| Figure S15. | Variation of hydrodynamic diameterof aqueous pH.                                      | S12        |
| Figure S16. | FESEM, TEM images of90 mM Bu <sub>4</sub> NBr at pH 8.5.                              | S12        |

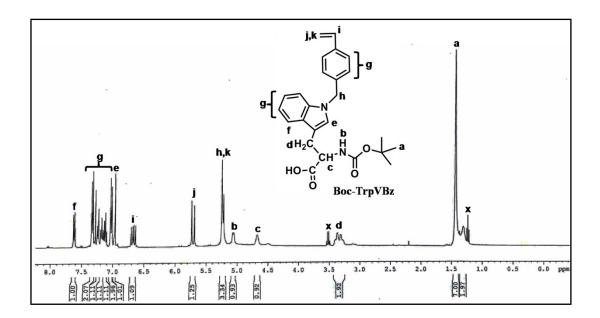
| Figure S17. | % Transmittance versus temperature curvesof Bu <sub>4</sub> NBr. | S13 |
|-------------|------------------------------------------------------------------|-----|
| Figure S18. | % Transmittance vs temperature of Bu <sub>4</sub> NBr.           | S13 |
| Figure S19. | Turbidity curves (heating/cooling) at different pHs              | S14 |
| Figure S20. | Variation of % transmittance of aqueous solutions of             | S14 |
| Figure S21. | FESEM image of the aqueous turbid suspension of                  | S15 |


**Scheme S1.** Synthesis of poly(TrpVBz) by the Boc deprotection of poly(Boc-TrpVBz)

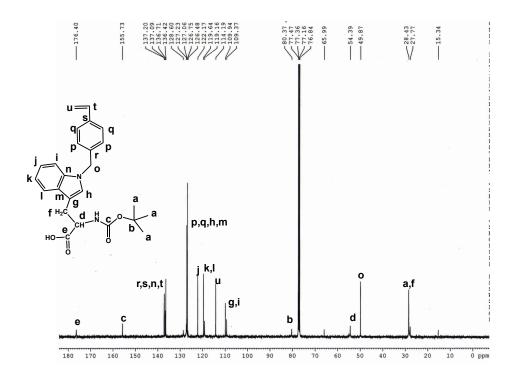
**Table S1.** Effect of water percentage on the phase behaviour of poly(Boc-TrpVBz)<sub>50</sub> solution in different mixed solvents.


| Organic | MWP (%) required for turbid suspension as examined via |      | Water<br>percentage (%) | Cloud point               |
|---------|--------------------------------------------------------|------|-------------------------|---------------------------|
| solvent | Transmittance                                          | DLS  |                         | $(T_{\mathrm{cU}})$ ( °C) |
|         | 21.5                                                   | 21.5 | 21                      | 18.3                      |
| DMCO    |                                                        |      | 23                      | 34.5                      |
| DMSO    |                                                        |      | 25                      | 53.6                      |
|         |                                                        |      | 27                      | 72.3                      |
|         | 27.5                                                   |      | 27                      | 19.4                      |
|         |                                                        |      | 29                      | 29.3                      |
| DME     |                                                        | 20.0 | 31                      | 40.0                      |
| DMF     |                                                        | 28.0 | 33                      | 51.0                      |
|         |                                                        |      | 35                      | 31.5                      |
|         |                                                        |      | 37                      | 69.7                      |
|         | ЭН 11.5                                                | 11.5 | 10                      | 12.2                      |
|         |                                                        |      | 12                      | 25.2                      |
| МеОН    |                                                        |      | 14                      | 39.5                      |
|         |                                                        |      | 16                      | 48.2                      |
|         |                                                        |      | 18                      | 56.6                      |

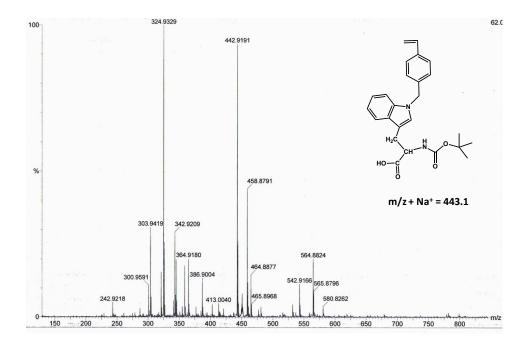
**Table S2.** Effect of molecular weight of poly(Boc-TrpVBz) on its UCST-type cloud point  $(T_{cU})$  in different mixed solvents.


| Sample name                     |             | Cloud point (T <sub>cU</sub> ) (°C) |             |
|---------------------------------|-------------|-------------------------------------|-------------|
|                                 | DMSO-Water  | DMF-Water                           | MeOH-Water  |
|                                 | (23% water) | (31% water)                         | (12% water) |
| Poly(Boc-TrpVBz) <sub>25</sub>  | 11.9        | -                                   | •           |
| Poly(Boc-TrpVBz) <sub>25</sub>  | 25.8        | 37.5                                | 21.4        |
| Poly(Boc-TrpVBz) <sub>50</sub>  | 34.8        | 40.5                                | 26.9        |
| Poly(Boc-TrpVBz) <sub>100</sub> | 50.6        | 45.9                                | 35.4        |




**Figure S1.** <sup>1</sup>H-NMR spectrum of Boc-Trp (The signal at  $\delta$  7.26 ppm corresponds to CHCl<sub>3</sub> present in CDCl<sub>3</sub>).




**Figure S2.** ESI-MS spectrum of Boc-Trp (theoretical  $m/z + Na^+ = 327.3$ )



**Figure S3.** <sup>1</sup>H-NMR spectrum of Boc-TrpVBz (The signal at 'x' for diethyl ether).



**Figure S4.** <sup>13</sup>C-NMR spectrum of Boc-TrpVBz.



**Figure S5.** ESI-MS spectrum of Boc-TrpVBz (theoretical  $m/z + Na^+ = 443.1$ ).

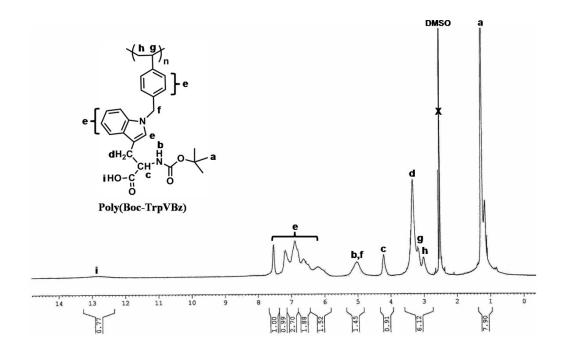
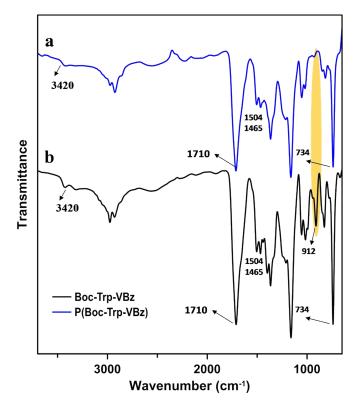
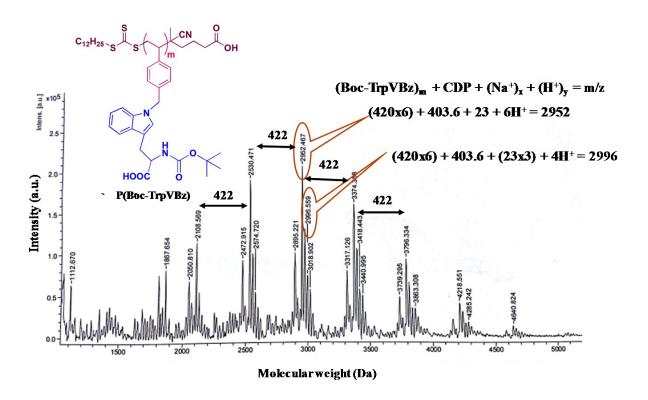
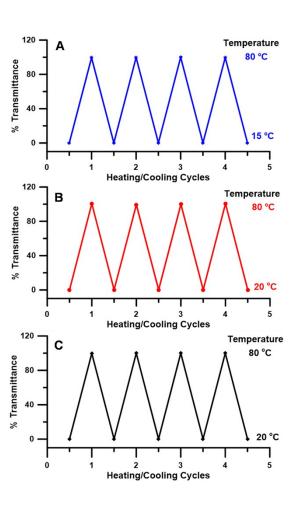
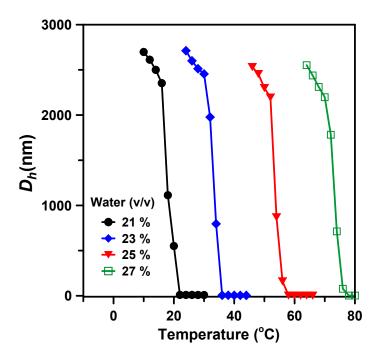
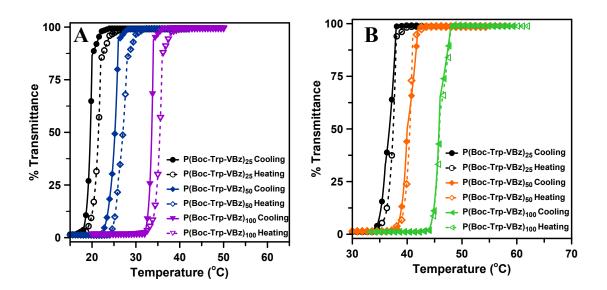



Figure S6. <sup>1</sup>H-NMR spectrum of poly(Boc-TrpVBz) in DMSO-d<sub>6</sub>.

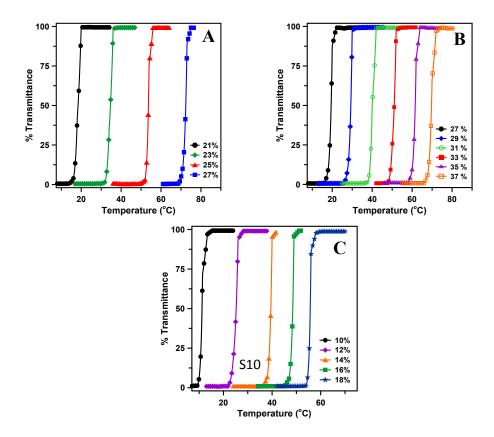






Figure S7. FTIR spectra of poly(Boc-TrpVBz) and Boc-TrpVBz monomer

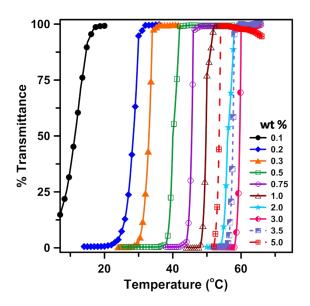



**Figure S8.** MALDI-TOF-MS spectrum of poly(4-vinyl benzyl [Boc-tryptophan])<sub>8</sub> [poly(Boc-TrpVBz)<sub>8</sub>].

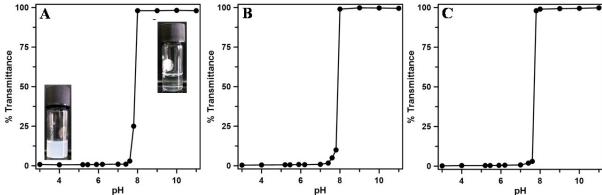



**Figure S9.** Variation of % transmittance of solutions of poly(Boc-TrpVBz)<sub>50</sub> (0.5 wt%) in different mixed solvents under four heating/cooling cycles: (A) MeOH-water (12%); (B) DMSO-water (31%) and (C) DMF-water (31%).

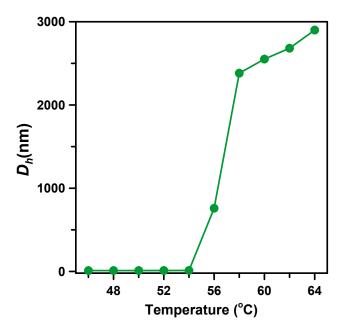



**Figure S10.** Variation of hydrodynamic diameter  $(D_h)$  with temperature for poly(Boc-TrpVBz)<sub>50</sub> (0.5 wt%) in DMSO-water mixed solvent of varying water content.




**Figure S11.** Turbidity curves (at  $\lambda = 600$  nm) of poly(Boc-TrpVBz) of different molecular weights in (A) MeOH-Water (12 %) and (B) DMF-water (31 %).




**Figure S12.** Turbidity curves (at  $\lambda = 600$  nm) of poly(Boc-TrpVBz)<sub>50</sub> (0.5 wt%) with the variation of water percentage in mixed solvent containing (A) DMSO, (B) DMF and (C) MeOH.



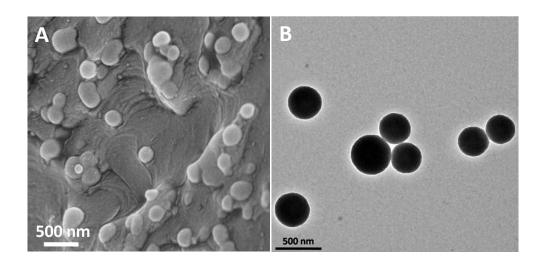
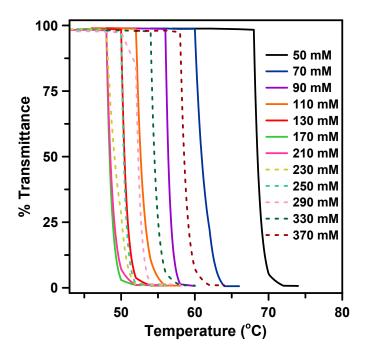
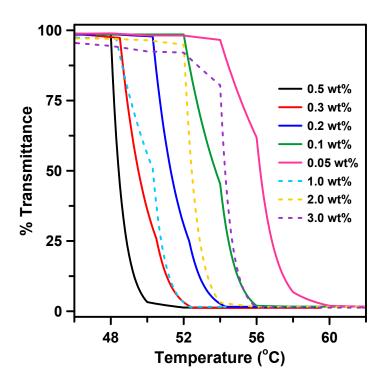
**Figure S13.** Turbidity curves for varying concentration of poly(Boc-TrpVBz)<sub>50</sub> in DMF-water (31 %) mixed solvent.

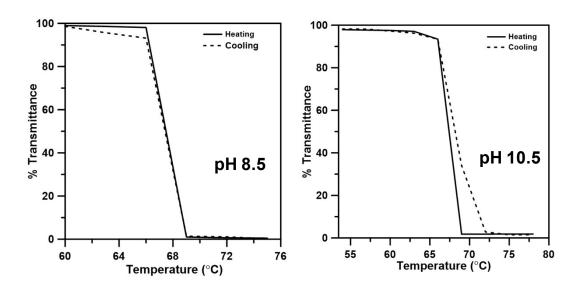


**Figure S14.** The plot of % transmittance (at  $\lambda = 600$  nm) of 0.5 wt % aqueous solutions of poly(Boc-TrpVBz)s of different molecular weights at different pHs: (A) poly(Boc-TrpVBz)<sub>25</sub>; (B) poly(Boc-TrpVBz)<sub>50</sub> and (C) poly(Boc-TrpVBz)<sub>100</sub>. Inset showed the photographs of aqueous poly(Boc-TrpVBz)<sub>25</sub> solution at different pHs.

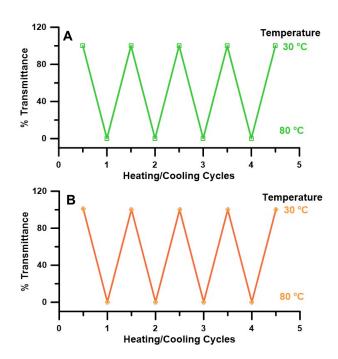


**Figure S15.** Variation of hydrodynamic diameter ( $D_h$ ) with temperature for aqueous poly(Boc-TrpVBz)<sub>100</sub> solution at pH 8.5 in presence of 90 mM of Bu<sub>4</sub>NBr.

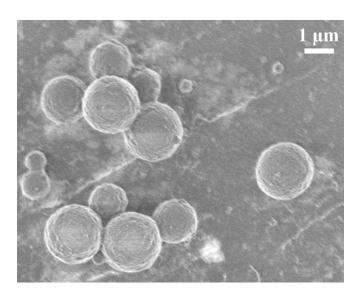




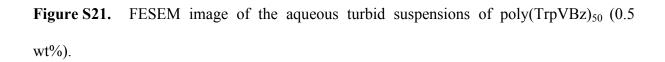


Figure S16. (A) FESEM and (B) TEM images of the aqueous solution of poly(Boc-TrpVBz)<sub>50</sub> (0.5wt%) in the presence of 90 mM Bu<sub>4</sub>NBr at pH 8.5.




**Figure S17.** % Transmittance versus temperature curves for aqueous poly(Boc-TrpVBz)<sub>100</sub> solution at pH 8.5 in presence of varying concentrations of Bu<sub>4</sub>NBr.




**Figure S18.** % Transmittance versus temperature curves of varying concentrations of aqueous poly(Boc-TrpVBz)<sub>100</sub> solution at pH 8.5 in presence of 170 mM of Bu<sub>4</sub>NBr.




**Figure S19.** Turbidity curves (heating/cooling) of aqueous solutions of poly(Boc-TrpVBz)<sub>50</sub> (0.5 wt%) in the presence of 90 mM Bu<sub>4</sub>NBr at different pHs.



**Figure S20.** Variation of % transmittance of aqueous solutions of poly(Boc-TrpVBz)<sub>50</sub> (0.5 wt%) in the presence of 90 mM Bu<sub>4</sub>NBr under four heating/cooling cycles at different pHs: (A) 8.5 and (B) 10.5.



