Electronic Supplementary Information (ESI)

Sterically very bulky aliphatic/aromatic phosphine-sulfonate palladium catalysts for ethylene polymerization and copolymerization with polar monomers

Jian Xia,^{a,c,d} Yixin Zhang,^{a,*} Xiaoqiang Hu,^{a,b} Xin Ma,^{a,b} Lei Cui,^a Jianfu Zhang^{a,c,d} and Zhongbao Jian^{a,*}

^aState Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China

^bUniversity of Science and Technology of China, Hefei 230026, China

^cSchool of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China

^{*d*}Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, China

Contents

2. Preparation of ligands and catalystsS33. General procedures for the polymerizationsS14. NMR figures of ligands and catalystsS13. NMR figures of (co)polymersS24. GPC traces and DSC data of (co)polymersS35. Crystallographic data for L1, and 3S5	1. General information	S2
3. General procedures for the polymerizations\$14. NMR figures of ligands and catalysts\$13. NMR figures of (co)polymers\$24. GPC traces and DSC data of (co)polymers\$35. Crystallographic data for L1, and 3\$5	2. Preparation of ligands and catalysts	S3
4. NMR figures of ligands and catalystsS13. NMR figures of (co)polymersS24. GPC traces and DSC data of (co)polymersS35. Crystallographic data for L1, and 3S5	3. General procedures for the polymerizations	S11
3. NMR figures of (co)polymersS2.4. GPC traces and DSC data of (co)polymersS35. Crystallographic data for L1, and 3S5	4. NMR figures of ligands and catalysts	S12
4. GPC traces and DSC data of (co)polymersS35. Crystallographic data for L1, and 3S5	3. NMR figures of (co)polymers	S25
5. Crystallographic data for L1, and 3 S5	4. GPC traces and DSC data of (co)polymers	S38
	5. Crystallographic data for L1, and 3	S58
6. References S5	6. References	S58

General Procedures and Materials: All syntheses involving air- and moisture sensitive compounds were carried out using standard Schlenk-type glassware (or in a glove box) under an atmosphere of nitrogen. All solvents were purified from the MBraun SPS system. NMR spectra for the ligands, complexes, and polymers were recorded on a Bruker AV400 (¹H: 400 MHz, ¹³C: 100 MHz, ³¹P: 162 MHz, ¹⁹F: 376 MHz) or a Bruker AV500 (¹H: 500 MHz, ¹³C: 125 MHz, ³¹P: 202 MHz, ¹⁹F: 470 MHz). NMR assignments were confirmed by ¹H–¹H COSY, ¹H–¹³C HSQC and ¹H–¹³C HMBC experiments when necessary. The molecular weights (M_w) and molecular weight distributions (M_w/M_n) of polyethylenes and copolymers were measured by means of gel permeation chromatography (GPC) on a PL-GPC 220-type high-temperature chromatograph equipped with three PL-gel 10 μ m Mixed-B LS type columns at 150 °C. Melting points (T_m) of polyethylenes and copolymers were measured through DSC analyses, which were carried out on a Q 100 DSC from TA Instruments under a nitrogen atmosphere at heating and cooling rates of 10 °C/min (temperature range: 20–160 °C). Elemental analysis were performed at the National Analytical Research Centre of Changchun Institute of Applied Chemistry.

X-Ray diffraction: Data collections were performed at -88.5 °C on a Bruker SMART APEX diffractometer with a CCD area detector, using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The determination of crystal class and unit cell parameters was carried out by the SMART program package.¹ The raw frame data were processed using SAINT and SADABS to yield the reflection data file.² All structures were solved by direct methods and refined by full-matrix least-squares procedures on F^2 using SHELXTL 2014.³ Refinement was performed on F^2 anisotropically for all non-hydrogen atoms by the full-matrix least-squares method. The hydrogen atoms were placed at the calculated positions and were included in the structure calculation without further refinement of the parameters. *Exceptions and special features*: For ligand L1, the program SQUEEZE⁴ was used to remove mathematically the effect of the solvent. The quoted formula and derived parameters are not included the squeezed solvent molecules.

Materials: MenPCl₂⁵, lithium-2,4,6-trimethoxybenzene⁶, 2-lithium-2',6'-dimethoxybiphenyl⁷ and 2-bromo-2',6'-difluorobiphenyl⁸ were prepared according to the literature procedures. All other reagents were commercially available and used as received.

Preparation of Ligands and Catalysts

Preparation of Ligand L1: At 0 °C "BuLi (9.1 mL, 1.6 M in hexane, 14.6 mmol, 2.1 equiv) was added to a solution of benzenesulfonic acid (1.095 g, 6.9 mmol, 1.0 equiv) in THF (50 mL) and the reaction mixture was stirred at 25 °C for 30 min. The formed suspension was added at -78 °C under vigorous stirring to a solution of MenPCl₂ (1.660 g, 6.9 mmol, 1.0 equiv) in THF (50 mL). The mixture was allowed to warm slowly to room temperature. A solution of 2-lithium-2',6'-dimethoxybiphenyl (2.200 g, 6.9 mmol, 1.0 equiv) in THF (30 mL) was added at 0 °C, and the reaction mixture was stirred at room temperature overnight. Volatiles were removed under vacuum to yield a dark brown solid. Water (100 mL) was slowly added and the resulting mixture was acidified to pH = 2 using a 10% HCl/H₂O solution. The mixture was extracted with CH₂Cl₂ (3 × 50 mL) and the combined organic phase was dried over MgSO₄. The solvent was removed in vacuo after filtration to give a pale yellow solid, which was precipitated from a mixture of CH₂Cl₂ and Et₂O to afford the product (2.220 g, 4.1 mmol, 60%).

¹**H** NMR (500 MHz, 298 K, CDCl₃, 7.26 ppm): $\delta = 8.38 \times 8.34$ (m, 1H, H₆), 8.11~8.03 (m, 1H, H₁₈), 8.08 (dd, ¹*J*_{PH} = 547.4 Hz, ³*J*_{HH} = 3.52 Hz, 1H, P-H), 7.81 (tt, ³*J*_{HH} = 7.7 Hz, ⁴*J*_{HH} = 1.4 Hz, 1H, H₂₀), 7.84~7.79 (m, 2H, H₅ & H₁₉), 7.55 (dddd, ³*J*_{HH} = 7.9 Hz, ⁴*J*_{PH} = 4.3 Hz, ⁴*J*_{HH} = 1.4 Hz, 1H, H₂₁), 7.48~7.35 (m, 3H, H₃ & H₄ & H₂₆), 6.68 (d, ³*J*_{HH} = 8.4 Hz, 1H, H_{25/27}), 6.49 (d, ³*J*_{HH} = 8.4 Hz, 1H, H_{25/27}), 3.83~3.93 (m, 1H, H₇), 3.76 (s, 3H, H_{29/30}), 2.80 (s, 3H, H_{29/30}), 1.79~1.76 (dbr, 1H, H₁₀), 1.73~1.60 (m, 2H, H₉ & H₁₂), 1.56~1.36 (m, 3H, H₈ & H₁₁ & H₁₃), 1.30~1.11 (m, 2H, H₉ & H₁₂), 0.90 (qd, ³*J*_{HH} = 12.9 Hz, ⁴*J*_{HH} = 3.5 Hz, 1H, H₁₀), 0.82 (d, ³*J*_{HH} = 7.1 Hz, 6H, H_{14/15}), 0.63 (d, ³*J*_{HH} = 6.6 Hz, 3H, H₁₆).

¹³C{¹H} NMR (125 MHz, 298 K, CDCl₃, 77.16 ppm): $\delta = 156.70$ (C_{24/28}), 156.65 (C_{24/28}), 151.41 (d, ²*J*_{PC} = 8.2 Hz, C₁), 141.51 (d, ²*J*_{PC} = 7.3 Hz, C₂₂), 134.77 (d, ³*J*_{PC} = 8.6 Hz, C₂₁), 133.82 (d, ⁴*J*_{PC} = 1.8 Hz, C₂₀), 133.83 (d, ²*J*_{PC} = 9.1 Hz, C₃), 133.41 (d, ⁴*J*_{PC} = 3.2 Hz, C₅), 132.99 (d, ²*J*_{PC} = 7.3 Hz, C₁₈), 131.61 (C₂₆), 129.28 (C₆), 129.20 (C₄), 127.58 (d, ³*J*_{PC} = 10.9 Hz, C₁₉), 116.26 (d, ¹*J*_{PC} = 81.3 Hz, C₁₇), 112.91 (d, ³*J*_{PC} = 6.1 Hz, C₂₃), 112.86 (d, ¹*J*_{PC} = 88.6 Hz, C₂), 103.92 (C_{25/27}), 103.68 (C_{25/27}), 55.70 (C_{29/30}), 54.08 (C_{29/30}), 43.70 (d, ²*J*_{PC} = 1.9 Hz, C₈), 36.05 (d, ¹*J*_{PC} = 43.6 Hz, C₇), 35.66 (d, ³*J*_{PC} = 3.6 Hz, C₉), 34.10 (C₁₀), 33.21 (d, ³*J*_{PC} = 14.5 Hz, C₁₁), 28.59 (d, ³*J*_{PC} = 6.4 Hz, C₁₃), 24.25 (d, ²*J*_{PC} = 13.6 Hz, C₁₂), 22.04 (C_{14/15}), 21.20 (C₁₆), 15.03 (C_{14/15}).

³¹**P**{¹**H**} **NMR** (162 MHz, 298 K, CDCl₃): $\delta = -2.34$.

Elemental analysis: calc. for $C_{30}H_{37}O_5PS$ (540.65 g mol⁻¹): C, 66.65; H, 6.90. Found: C, 66.24; H, 7.11.

Preparation of Ligand L2: At 0 $\[mathbb{C}\]^n$ BuLi (5.5 mL, 1.6 M in hexane, 8.8 mmol, 2.1 equiv) was added to a solution of benzenesulfonic acid (668 mg, 4.2 mmol, 1.0 equiv) in THF (30 mL) and the reaction mixture was stirred at 25 $\[mathbb{C}\]$ for 30 min. The formed suspension was added at -78 $\[mathbb{C}\]$ under vigorous stirring to a solution of MenPCl₂ (1.016 g, 4.2 mmol, 1.0 equiv) in THF (50 mL). The mixture was allowed to warm slowly to room temperature. In a second flask at -78 $\[mathbb{C}\]$ mmol, 1.6 M in hexane, 4.5 mmol, 1.1 equiv) was added to a solution of 2-bromo-biphenyl (980 mg, 4.2 mmol, 1.0 equiv) in THF (30 mL). The mixture was stirred at -78 $\[mathbb{C}\]$ for 30 min and then added with the solution in the first flask. The reaction mixture was allowed to warm slowly to room temperature and stirred overnight. Volatiles were removed under vacuum to yield a dark brown solid. Water (100 mL) was slowly added and the resulting mixture was acidified to pH = 2 using a 10% HCl/H₂O solution. The mixture was extracted with CH₂Cl₂ (3 × 50 mL) and the combined organic phase was dried over MgSO₄. The solvent was removed in vacuo after filtration to give a pale yellow solid, which was precipitated from a mixture of CH₂Cl₂ and *n*-hexane to afford the product (1.287 g, 2.7 mmol, 63%).

¹**H** NMR (500 MHz, 298 K, CDCl₃, 7.26 ppm): $\delta = 8.39$ (ddd, ${}^{3}J_{\text{HH}} = 7.8$ Hz, ${}^{4}J_{\text{PH}} = 4.9$ Hz, ${}^{4}J_{\text{HH}} = 1.3$ Hz, 1H, H₆), 8.09 (dd, ${}^{1}J_{\text{PH}} = 551.7$ Hz, ${}^{3}J_{\text{HH}} = 3.07$ Hz, 1H, P-H), 8.01 (ddd, ${}^{3}J_{\text{PH}} = 10.0$ Hz, ${}^{3}J_{\text{HH}} = 7.9$ Hz, ${}^{4}J_{\text{HH}} = 1.3$ Hz, 1H, H₁₈), 7.86 (tt, ${}^{3}J_{\text{HH}} = 7.6$ Hz, ${}^{4}J_{\text{HH}} = 1.4$ Hz, 1H, H₂₀), 7.79~7.72 (m, 2H, H₅ & H₁₉), 7.62 (dddd, ${}^{3}J_{\text{HH}} = 7.8$ Hz, ${}^{4}J_{\text{PH}} = 4.6$ Hz, ${}^{4}J_{\text{HH}} = 1.3$ Hz, 1H, H₂₁), 7.53~7.49 (m, 1H, H₄), 7.48~7.38 (m, 4H, H₃ & H_{24/28} & H₂₆), 7.03 (dbr, 2H, H_{25/27}), 3.88~3.77 (m, 1H, H₇), 1.74 (m, 2H, H₉ & H₁₀), 1.66~1.64 (m, 1H, H₁₂), 1.54~1.46 (m, 1H, H₁₁), 1.31~1.09 (m, 4H, H₈ & H₉ & H₁₂ & H₁₃), 0.93~0.83 (m, 1H, H₁₀), 0.82 (d, ${}^{3}J_{\text{HH}} = 6.5$ Hz, 3H, H₁₆), 0.72 (d, ${}^{3}J_{\text{HH}} = 6.8$ Hz, 3H, H_{14/15}), 0.59 (d, ${}^{3}J_{\text{HH}} = 6.6$ Hz, 3H, H_{14/15}).

¹³C{¹H} NMR (125 MHz, 298 K, CDCl₃, 77.16 ppm): $\delta = 152.13$ (d, ²*J*_{PC} = 8.4 Hz, C₁), 149.11 (d, ²*J*_{PC} = 7.4 Hz, C₂₂), 137.54 (d, ³*J*_{PC} = 5.9 Hz, C₂₃), 134.91 (d, ⁴*J*_{PC} = 3.1 Hz, C₅), 134.65 (d, ²*J*_{PC} = 10.0 Hz, C₃), 134.49 (d, ⁴*J*_{PC} = 2.5 Hz, C₂₀), 133.75 (d, ²*J*_{PC} = 7.7 Hz, C₁₈), 132.92 (d, ³*J*_{PC} = 8.1 Hz, C₂₁), 130.26 (d, ³*J*_{PC} = 8.9 Hz, C₆), 129.98 (d, ³*J*_{PC} = 12.0 Hz, C₄), 129.94 (C₂₆), 129.65 (C_{24/28}), 128.51 (C_{25/27}), 128.30 (d, ³*J*_{PC} = 10.7 Hz, C₁₉), 115.52 (d, ¹*J*_{PC} = 79.0 Hz, C₁₇), 112.45 (d, ¹*J*_{PC} = 87.2 Hz, C₂), 44.07 (d, ³*J*_{PC} = 2.4 Hz, C₁₃), 37.20 (d, ¹*J*_{PC} = 43.1 Hz, C₇), 36.24 (d, ³*J*_{PC} = 4.0 Hz, C₉), 34.30 (d, ⁴*J*_{PC} = 1.8 Hz, C₁₀), 33.33 (d, ³*J*_{PC} = 14.6 Hz, C₁₁), 29.49 (d, ²*J*_{PC} = 6.9 Hz, C₈), 24.58 (d, ²*J*_{PC} = 13.8 Hz, C₁₂), 22.29 (C₁₆), 21.15 (C_{14/15}), 15.09 (C_{14/15}).

³¹**P**{¹**H**} **NMR** (162 MHz, 298 K, CDCl₃): $\delta = -1.19$.

Elemental analysis: calc. for $C_{28}H_{33}O_3PS$ (480.60 g mol⁻¹): C, 69.98; H, 6.92. Found: C, 70.14; H, 7.03.

Preparation of Ligand L3: At 0 $\[mathbb{C}\]$ "BuLi (5.5 mL, 1.6 M in hexane, 8.8 mmol, 2.1 equiv) was added to a solution of benzenesulfonic acid (674 mg, 4.3 mmol, 1.0 equiv) in THF (30 mL) and the reaction mixture was stirred at 25 $\[mathbb{C}\]$ for 30 min. The formed suspension was added at -78 $\[mathbb{C}\]$ under vigorous stirring to a solution of MenPCl₂ (1.019 g, 4.2 mmol, 1.0 equiv) in THF (50 mL). The mixture was allowed to warm slowly to room temperature. In a second flask at -78 $\[mathbb{C}\]$ "BuLi (2.9 mL, 1.6 M in hexane, 4.6 mmol, 1.1 equiv) was added to a solution of 2-bromo-2',6'-difluorobiphenyl (1.155 g, 4.3 mmol, 1.0 equiv) in THF (30 mL). The mixture was stirred at -78 $\[mathbb{C}\]$ for 30 min and then added with the solution in the first flask. The reaction mixture was allowed to warm slowly to room temperature and stirred overnight. Volatiles were removed under vacuum to yield a dark brown solid. Water (100 mL) was slowly added and the resulting mixture was acidified to pH = 2 using a 10% HCl/H₂O solution. The mixture was extracted with CH₂Cl₂ (3 × 50 mL) and the combined organic phase was dried over MgSO₄. The solvent was removed in vacuo after filtration to give a pale yellow solid, which was precipitated from a mixture of THF and *n*-hexane to afford the product (1.330 g, 2.6 mmol, 60%).

¹**H** NMR (500 MHz, 298 K, CDCl₃, 7.26 ppm): $\delta = 8.28$ (t, ${}^{3}J_{\text{HH}} = 6.4$ Hz, 1H, H₆), 8.19 (t, ${}^{3}J_{\text{HH}} = 9.0$ Hz, 1H, H₁₈), 8.14 (dbr, ${}^{1}J_{\text{PH}} = 530.9$ Hz, 1H, P-H), 7.91 (t, ${}^{3}J_{\text{HH}} = 7.7$ Hz, 1H, H₂₀), 7.84 (t, ${}^{3}J_{\text{HH}} = 7.9$ Hz, 1H, H₁₉), 7.68 (t, ${}^{3}J_{\text{HH}} = 7.8$ Hz, 1H, H₅), 7.59 (br, 1H, H₂₁), 7.45~7.39 (m, 2H, H₄ & H₂₆), 7.21 (dd, ${}^{2}J_{\text{PH}} = 14.2$ Hz, ${}^{3}J_{\text{HH}} = 7.8$ Hz, 1H, H₃), 7.09 (t, ${}^{3}J_{\text{HH}} = 8.7$ Hz, 1H, H_{25/27}), 6.82 (t, ${}^{3}J_{\text{HH}} = 8.6$ Hz, 1H, H_{25/27}), 3.98 (q, ${}^{2}J_{\text{PH}} = {}^{3}J_{\text{HH}} = 13.7$ Hz, 1H, H₇), 1.79 (d, ${}^{3}J_{\text{HH}} = 13.2$ Hz, 1H, H₁₀), 1.72 (br, 2H, H₉ & H₁₂), 1.49 (br, 3H, H₈ & H₁₁ & H₁₃), 1.31~1.15 (m, 2H, H₉ & H₁₂), 0.99~0.92 (m, 1H, H₁₀), 0.89 (d, ${}^{3}J_{\text{HH}} = 6.8$ Hz, 3H, H_{14/15}), 0.82 (d, ${}^{3}J_{\text{HH}} = 6.5$ Hz, 3H, H₁₆), 0.67 (d, ${}^{3}J_{\text{HH}} = 6.6$ Hz, 3H, H_{14/15}).

¹³C{¹H} NMR (125 MHz, 298 K, CDCl₃, 77.16 ppm): δ = 160.41 (dd, ¹*J*_{FC} = 60.0 Hz, ³*J*_{FC} = 5.8 Hz, C_{24/28}), 158.43 (dd, ¹*J*_{FC} = 59.0 Hz, ³*J*_{FC} = 5.9 Hz, C_{24/28}), 151.98 (d, ²*J*_{PC} = 8.6 Hz, C₁), 136.17 (d, ²*J*_{PC} = 6.8 Hz, C₂₂), 134.66 (d, ⁴*J*_{PC} = 2.4 Hz, C₂₀), 134.58 (d, ⁴*J*_{PC} = 3.0 Hz, C₅), 134.50 (d, ²*J*_{PC} = 5.9 Hz, C₃), 134.42 (d, ³*J*_{PC} = 2.4 Hz, C₂₁), 133.91 (d, ²*J*_{PC} = 7.3 Hz, C₁₈), 132.69 (t, ³*J*_{FC} = 10.2 Hz, C₂₆), 129.61 (d, ³*J*_{PC} = 6.0 Hz, C₄), 129.56 (d, ³*J*_{PC} = 3.6 Hz, C₁₉), 129.49 (d, ³*J*_{PC} = 3.3 Hz, C₆), 117.99 (d, ¹*J*_{PC} = 77.7 Hz, C₁₇), 113.68 (td, ²*J*_{FC} = 20.0 Hz, ³*J*_{PC} = 5.9 Hz, C₂₃), 112.70 (dd, ²*J*_{FC} = 21.6 Hz, ⁴*J*_{FC} = 3.5 Hz, C_{25/27}), 112.41 (dd, ²*J*_{FC} = 21.8 Hz, ⁴*J*_{FC} = 3.6 Hz, C_{25/27}), 111.65 (d, ¹*J*_{PC} = 88.2 Hz, C₂), 44.49 (d, ³*J*_{PC} = 2.6 Hz, C₁₃), 36.95 (d, ¹*J*_{PC} = 42.9 Hz, C₇), 35.83 (d, ²*J*_{PC} = 4.0 Hz, C₁₂), 34.41 (C₁₀), 33.49 (d, ³*J*_{PC} = 14.8 Hz, C₁₁), 29.54 (d, ²*J*_{PC} = 6.8 Hz, C₈), 24.67 (d, ³*J*_{PC} = 13.8 Hz, C₉), 22.26 (C₁₆), 21.28 (C_{14/15}), 15.15 (C_{14/15}).

³¹**P**{¹**H**} **NMR** (202 MHz, 298 K, CDCl₃): $\delta = -2.45$.

¹⁹**F NMR** (470 MHz, 298 K, CDCl₃): $\delta = -110.56, -113.36$.

Elemental analysis: calc. for $C_{28}H_{31}F_2O_3PS$ (516.58 g mol⁻¹): C, 65.10; H, 6.05. Found: C, 65.47; H, 5.94.

Preparation of Ligand L4: At 0 °C "BuLi (5.7 mL, 1.6 M in hexane, 9.1 mmol, 2.1 equiv) was added to a solution of benzenesulfonic acid (697 mg, 4.4 mmol, 1.0 equiv) in THF (30 mL) and the reaction mixture was stirred at 25 °C for 30 min. The formed suspension was added at -78 °C under vigorous stirring to a solution of MenPCl₂ (1.054 g, 4.4 mmol, 1.0 equiv) in THF (50 mL). The mixture was allowed to warm slowly to room temperature and stirred overnight. A solution of lithium-2,4,6-trimethoxybenzene (764 mg, 4.4 mmol, 1.0 equiv) in THF (15 mL) was added at 0 °C, and the reaction mixture was stirred at room temperature for 2 h. Volatiles were removed under vacuum to yield a dark brown solid. Water (100 mL) was slowly added and the resulting mixture was acidified to pH = 2 using a 10% HCl/H₂O solution. The mixture was extracted with CH₂Cl₂ (3 × 50 mL) and the combined organic phase was dried over MgSO₄. The solvent was removed in vacuo after filtration to give a pale yellow solid, which was twice recrystallized from a mixture of CH₂Cl₂ and *n*-hexane at -35 °C to afford the product (500 mg, 1.0 mmol, 23%).

¹**H** NMR (500 MHz, 298 K, CDCl₃, 7.26 ppm): δ = 8.88 (dd, ¹*J*_{PH} = 560.1 Hz, ³*J*_{HH} = 5.12 Hz, 1H, P-H), 8.33 (dbr, 1H, H₆), 7.66~7.56 (m, 1H, H₅), 7.41~7.33 (m, 2H, H₃ & H₄), 6.25 (d, ⁴*J*_{PH} = 4.0 Hz, 2H, H₁₉ & H₂₁), 3.92 (s, 3H, H₂₄), 3.90 (s, 6H, H_{23/25}), 3.85~3.80 (m, 1H, H₇), 1.75 (dbr, 1H, H₁₀), 1.71~1.66 (m, 1H, H₁₂), 1.62~1.50 (m, 2H, H₉ & H₁₃), 1.47~1.39 (m, 2H, H₈ & H₁₁), 1.33~1.27 (m, 1H, H₉), 1.16 (qd, ³*J*_{PH} = 13.0 Hz, ³*J*_{HH} = 3.1 Hz, 1H, H₁₂), 0.92 (d, ³*J*_{HH} = 6.8 Hz, 3H, H_{14/15}), 0.82 (dbr, 1H, H₁₀), 0.80 (d, ³*J*_{HH} = 6.4 Hz, 3H, H₁₆), 0.67 (d, ³*J*_{HH} = 6.7 Hz, 3H, H_{14/15}).

¹³C{¹H} NMR (125 MHz, 298 K, CDCl₃, 77.16 ppm): $\delta = 167.78$ (C₂₀), 164.01 (C_{18/22}), 151.62 (d, ${}^{2}J_{PC} = 8.9$ Hz, C₁), 134.09 (d, ${}^{2}J_{PC} = 9.6$ Hz, C₃), 133.81 (d, ${}^{4}J_{PC} = 3.0$ Hz, C₅), 129.58 (d, ${}^{3}J_{PC} = 9.2$ Hz, C₆), 129.33 (d, ${}^{3}J_{PC} = 12.1$ Hz, C₄), 114.41 (d, ${}^{1}J_{PC} = 88.0$ Hz, C₂), 91.77 (d, ${}^{3}J_{PC} = 5.9$ Hz, C_{19/21}), 85.85 (d, ${}^{1}J_{PC} = 87.3$ Hz, C₁₇), 56.35 (C_{23/25}), 56.09 (C₂₄), 43.69 (d, ${}^{2}J_{PC} = 2.5$ Hz, C₈), 35.38 (d, ${}^{1}J_{PC} = 46.3$ Hz, C₇), 34.97 (d, ${}^{3}J_{PC} = 3.6$ Hz, C₉), 34.47 (d, ${}^{4}J_{PC} = 1.9$ Hz, C₁₀), 32.84 (d, ${}^{3}J_{PC} = 15.8$ Hz, C₁₁), 30.05 (d, ${}^{3}J_{PC} = 5.8$ Hz, C₁₃), 24.80 (d, ${}^{2}J_{PC} = 14.5$ Hz, C₁₂), 22.66 (C₁₆), 21.61 (C_{14/15}), 15.76 (C_{14/15}).

³¹P{¹H} NMR (162 MHz, 298 K, CDCl₃):
$$\delta = -10.62$$

Elemental analysis: calc. for C₂₅H₃₅O₆PS (494.58 g mol⁻¹): C, 60.71; H, 7.13. Found: C, 61.02; H, 7.24.

Preparation of complex 1: A solution of $PdMe_2(tmeda)$ (91 mg, 0.4 mmol, 1.0 equiv) in THF (5 mL) was added to a solution of L1 (196 mg, 0.4 mmol, 1.0 equiv) in THF (5 mL) and the reaction mixture was stirred for 5 h. Pyridine (65 mg, 0.8 mmol, 2.0 equiv) was added and the mixture was stirred for 2 h. Volatiles were removed under vacuum and the residue was precipitated from a mixture of CH₂Cl₂ and *n*-hexane to afford the product (182 mg, 68%).

¹**H** NMR (500 MHz, 298 K, CDCl₃, 7.26 ppm): $\delta = 8.63 \sim 8.61$ (m, 2H, H_{32/36}), 8.18 (dddd, ${}^{4}J_{PH} = 4.4$ Hz, ${}^{3}J_{HH} = 7.9$ Hz, ${}^{4}J_{HH} = 1.4$ Hz, 1H, H₆), 8.00~7.96 (m, 1H, H₁₈), 7.79 (tt, ${}^{3}J_{HH} = 7.7$ Hz, ${}^{4}J_{HH} = 1.7$ Hz, 1H, H₃₄), 7.64 (t, ${}^{3}J_{PH} = {}^{3}J_{HH} = 8.6$ Hz, 1H, H₃), 7.51~7.47 (m, 2H, H_{19/20}), 7.39 (t, ${}^{3}J_{HH} = 6.5$ Hz, 2H, H_{33/35}), 7.37~7.34 (m, 1H, H₅), 7.25 (br, 1H, H₄), 7.23~7.20 (m, 1H, H₂₁), 7.16 (t, ${}^{3}J_{HH} = 8.5$ Hz, 1H, H₂₆), 6.42 (d, ${}^{3}J_{HH} = 8.5$ Hz, 2H, H_{25/27}), 6.40 (d, ${}^{3}J_{HH} = 8.5$ Hz, 1H, H_{25/27}), 3.61 (s, 3H, H_{29/30}), 3.13 (s, 3H, H_{29/30}), 2.73~2.67 (m, 1H, H₇), 2.23 (br, 1H, H₁₂), 1.94~1.82 (m, 3H, H₈ & H₉ & H₁₃), 1.71~1.62 (m, 1H, H₁₀), 1.36~1.28 (m, 2H, H₁₁ & H₁₂), 1.23~1.19 (m, 1H, H₉), 0.90~0.86 (m, 1H, H₁₀), 0.83 (d, ${}^{3}J_{HH} = 5.6$ Hz, 3H, H₁₆), 0.58 (d, ${}^{3}J_{HH} = 6.6$ Hz, 3H, H_{14/15}), 0.41 (d, ${}^{3}J_{HH} = 6.3$ Hz, 3H, H_{14/15}), 0.36 (d, ${}^{3}J_{PH} = 1.9$ Hz, 3H, H₃₁).

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃, 77.16 ppm): $\delta = 157.85$ (C_{24/28}), 157.21 (C_{24/28}), 150.43 (C_{32/36}), 149.23 (d, ²*J*_{PC} = 12.9 Hz, C₁), 140.52 (d, ²*J*_{PC} = 10.6 Hz, C₂₂), 137.87 (C₃₄), 134.45 (d, ³*J*_{PC} = 8.3 Hz, C₂₁), 134.36 (d, ²*J*_{PC} = 6.7 Hz, C₁₈), 134.24 (C₃), 131.52 (d, ¹*J*_{PC} = 43.3 Hz, C₁₇), 129.97 (d, ⁴*J*_{PC} = 2.2 Hz, C₂₀), 129.87 (d, ⁴*J*_{PC} = 2.3 Hz, C₅), 129.49 (C₂₆), 129.26 (d, ³*J*_{PC} = 7.5 Hz, C₆), 129.26 (d, ¹*J*_{PC} = 29.5 Hz, C₂), 128.73 (d, ²*J*_{PC} = 6.1 Hz, C₄), 126.26 (d, ³*J*_{PC} = 8.2 Hz, C₁₉), 124.90 (d, ⁴*J*_{PC} = 2.3 Hz, C_{33/35}), 118.27 (d, ³*J*_{PC} = 4.3 Hz, C₂₃), 103.85 (C_{25/27}), 102.94 (C_{25/27}), 55.42 (C_{29/30}), 54.81 (C_{29/30}), 43.67 (C₈), 42.26 (d, ¹*J*_{PC} = 24.9 Hz, C₇), 38.70 (d, ²*J*_{PC} = 5.7 Hz, C₁₂), 32.98 (C₁₀), 32.39 (d, ²*J*_{PC} = 14.1 Hz, C₁₆), 29.03 (d, ³*J*_{PC} = 5.2 Hz, C₁₃), 24.67 (d, ³*J*_{PC} = 8.7 Hz, C₉), 23.04 (C₁₆), 21.24 (C_{14/5}), 17.04 (C_{14/15}), -2.32 (d, ²*J*_{PC} = 3.1 Hz, C₃₁).

³¹**P**{¹**H**} **NMR** (162 MHz, 298 K, CDCl₃): δ = 25.10

Elemental analysis: calc. for C₃₆H₄₄NO₅PPdS (740.20 g mol⁻¹): C, 58.41; H, 5.99; N, 1.89. Found: C, 58.63; H, 6.08; N, 1.80.

Preparation of complex 2: At -35 °C a solution of PdMe₂(tmeda) (131 mg, 0.5 mmol, 1.0 equiv) in THF (5 mL) was added to a solution of **L2** (239 mg, 0.5 mmol, 1.0 equiv) in THF (5 mL). The reaction mixture was stirred at -35 °C for 1 h and then pyridine (79 mg, 1.0 mmol, 2.0 equiv) was added. The mixture was allowed to warm to room temperature and stirred for 2 h. Volatiles were removed under vacuum and the residue was precipitated from a mixture of THF and *n*-hexane to yield a pale yellow solid. The solid was reprecipitated from a mixture of CH₂Cl₂ and Et₂O, and the solvent of the filtrate was removed in vacuo to afford the product (199 mg, 59%).

¹**H** NMR (500 MHz, 298 K, CD₂Cl₂, 5.32 ppm): $\delta = 8.50 \sim 8.48$ (m, 2H, H_{30/34}), 8.05 (dddd, ${}^{4}J_{PH} = 4.3$ Hz, ${}^{3}J_{HH} = 8.0$ Hz, ${}^{4}J_{HH} = 1.4$ Hz, 1H, H₆), 8.50~8.48 (m, 2H, H_{30/34}), 8.00~7.97 (m, 1H, H₁₈), 7.85 (tt, ${}^{3}J_{PH} = 7.7$ Hz, ${}^{4}J_{HH} = 1.7$ Hz, 1H, H₃₂), 7.60~7.54 (m, 2H, H_{24/28}), 7.45~7.41 (m, 3H, H_{31/33} & H₅), 7.39~7.36 (m, 2H, H_{25/27}), 7.24 (t, ${}^{3}J_{PH} = 7.6$ Hz, 1H, H₄), 7.19 (br, 5H, H₃ & H₂₁ & H_{19/20} & H₂₆), 2.93 (q, ${}^{2}J_{PH} = 13.0$ Hz, ${}^{3}J_{HH} = 11.9$ Hz, 1H, H₇), 2.02~1.90 (m, 2H, H₈ & H₁₂), 1.89~1.79 (m, 1H, H₉), 1.75~1.71 (dbr, 1H, H₁₀), 1.59~1.50 (m, 1H, H₁₂), 1.49 (br, 1H, H₁₁), 1.30~1.22 (m, 2H, H₉ & H₁₃), 0.98 (qd, ${}^{3}J_{HH} = 12.4$ Hz, ${}^{4}J_{HH} = 3.8$ Hz, 1H, H₁₀), 0.83 (d, ${}^{3}J_{HH} = 6.4$ Hz, 3H, H₁₆), 0.73 (d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, H_{14/15}), 0.64 (br, 3H, H_{14/15}), 0.13 (d, ${}^{3}J_{PH} = 2.3$ Hz, 3H, H₂₉).

¹³C{¹H} NMR (125 MHz, 298 K, CD₂Cl₂, 53.84 ppm): δ = 150.13 (C_{30/34}), 148.76 (C₁), 147.02 (d, ²*J*_{PC} = 10.1 Hz, C₂₂), 141.03 (d, ³*J*_{PC} = 4.1 Hz, C₂₃), 138.10 (C₃₂), 135.46 (C_{25/27}), 133.68 (d, ²*J*_{PC} = 7.6 Hz, C₁₈), 133.08 (C_{25/27}), 130.54 (d, ⁴*J*_{PC} = 2.3 Hz, C₅), 130.44 (d, ⁴*J*_{PC} = 2.2 Hz, C_{24/28}), 130.24 (C_{19/20}), 129.00 (d, ¹*J*_{PC} = 20.7 Hz, C₁₇), 128.81 (d, ¹*J*_{PC} = 40.4 Hz, C₂), 128.83 (C₄), 128.78 (C₆), 127.83 (C₂₆), 127.14 (C₃ & C₂₁), 126.43 (d, ⁴*J*_{PC} = 7.5 Hz, C_{24/28}), 124.98 (d, ⁴*J*_{PC} = 2.2 Hz, C_{31/33}), 44.18 (C₈), 41.23 (d, ¹*J*_{PC} = 22.4 Hz, C₇), 38.63 (C₁₂), 33.56 (C₁₀), 33.00 (d, ³*J*_{PC} = 13.1 Hz, C₁₁), 28.49 (d, ³*J*_{PC} = 4.5 Hz, C₁₃), 25.14 (d, ³*J*_{PC} = 10.3 Hz, C₉), 22.41 (C₁₆), 21.23 (C_{14/15}), 15.99 (C_{14/15}), 0.14 (d, ²*J*_{PC} = 2.5 Hz, C₂₆).

³¹**P**{¹**H**} **NMR** (202 MHz, 298 K, CD₂Cl₂): δ = 25.19.

Elemental analysis: calc. for $C_{34}H_{40}NO_3PPdS$ (680.15 g mol⁻¹): C, 60.04; H, 5.93; N, 2.06. Found: C, 60.13; H, 5.98; N, 1.99.

Preparation of complex 3: At -35 °C a solution of PdMe₂(tmeda) (112 mg, 0.4 mmol, 1.0 equiv) in THF (5 mL) was added to a solution of **L3** (224 mg, 0.4 mmol, 1.0 equiv) in THF (5 mL). The reaction mixture was stirred at -35 °C for 1 h and then pyridine (65 mg, 0.8 mmol, 2.0 equiv) was added. The mixture was allowed to warm to room temperature and stirred for 2 h. Volatiles were removed under vacuum and the residue was precipitated from a mixture of THF and *n*-hexane to yield a pale yellow solid. The solid was reprecipitated from a mixture of CH₂Cl₂ and Et₂O, and the solvent of the filtrate was removed in vacuo to afford the product (170 mg, 55%).

¹**H** NMR (500 MHz, 298 K, CDCl₃, 7.26 ppm): $\delta = 8.67 \sim 8.65$ (m, 2H, H_{30/34}), 8.11 (dddd, ⁴*J*_{PH} = 4.5 Hz, ³*J*_{HH} = 8.5 Hz, ⁴*J*_{HH} = 1.4 Hz, 1H, H₆), 7.98 ~ 7.94 (m, 1H, H₁₈), 7.81 (tt, ³*J*_{HH} = 7.7 Hz, ⁴*J*_{HH} = 1.8 Hz, 1H, H₃₂), 7.60 ~ 7.50 (m, 2H, H_{19/20}), 7.42 ~ 7.36 (m, 4H, H₃ & H₅ & H_{31/33}), 7.30 ~ 7.22 (m, 2H, H₄ & H₂₁), 7.12 ~ 7.06 (m, 1H, H₂₆), 6.76 (td, ³*J*_{HH} = 8.6 Hz, ³*J*_{FH} = 1.3 Hz, 1H, H_{25/27}), 6.48 (td, ³*J*_{HH} = 8.5 Hz, ³*J*_{FH} = 1.2 Hz, 1H, H_{25/27}), 2.80 ~ 2.74 (m, 1H, H₇), 2.63 (br, 1H, H₁₂), 2.26 ~ 2.21 (m, 1H, H₁₃), 1.78 ~ 1.72 (m, 1H, H₉), 1.68 ~ 1.64 (dbr, 1H, H₁₀), 1.68 ~ 1.55 (m, 1H, H₈), 1.51 ~ 1.45 (m, 1H, H₁₂), 1.41 (br, 1H, H₁₁), 1.26 ~ 1.17 (m, 1H, H₉), 0.91 (d, ³*J*_{HH} = 6.2 Hz, 3H, H₁₆), 0.83 ~ 0.81 (dbr, 1H, H₁₀), 0.77 (d, ³*J*_{HH} = 6.8 Hz, 3H, H_{14/15}), 0.66 (d, ³*J*_{HH} = 6.6 Hz, 3H, H_{14/15}), 0.37 (t, ³*J*_{PH} = 2.2 Hz, 3H, H₂₉).

¹³C{¹H} NMR (125 MHz, 298 K, CDCl₃, 77.16 ppm): $\delta = 160.49$ (dd, ${}^{1}J_{FC} = 15.0$ Hz, ${}^{3}J_{FC} = 6.9$ Hz, C_{24/28}), 158.52 (dd, ${}^{1}J_{FC} = 15.3$ Hz, ${}^{3}J_{FC} = 6.6$ Hz, C_{24/28}), 150.41 (C_{30/34}), 149.36 (d, ${}^{2}J_{PC} = 13.6$ Hz, C₁), 138.03 (C₃₂), 135.26 (d, ${}^{4}J_{PC} = 3.2$ Hz, C₅), 133.85 (d, ${}^{3}J_{PC} = 7.3$ Hz, C₂₁), 133.73 (d, ${}^{2}J_{PC} = 8.8$ Hz, C₁₈), 133.45 (d, ${}^{1}J_{PC} = 40.6$ Hz, C₁₇), 133.14 (d, ${}^{2}J_{PC} = 6.8$ Hz, C₂₂), 130.86 (d, ${}^{2}J_{PC} = 2.3$ Hz, C₃), 130.12 (C₂₆), 130.02 (C₂₀), 128.80 (d, ${}^{3}J_{PC} = 6.2$ Hz, C₆), 127.49 (d, ${}^{3}J_{PC} = 8.1$ Hz, C₁₉), 125.95 (d, ${}^{1}J_{PC} = 123.3$ Hz, C₂), 125.13 (C_{31/33}), 117.61 (td, ${}^{2}J_{FC} = 20.5$ Hz, ${}^{3}J_{PC} = 4.1$ Hz, C₂₃), 111.90 (dd, ${}^{2}J_{FC} = 22.0$ Hz, ${}^{4}J_{FC} = 3.3$ Hz, C_{25/27}), 111.48 (dd, ${}^{2}J_{FC} = 22.1$ Hz, ${}^{4}J_{FC} = 3.3$ Hz, C_{25/27}), 44.39 (C₈), 40.69 (d, ${}^{1}J_{PC} = 24.0$ Hz, C₇), 39.98 (d, ${}^{2}J_{PC} = 8.1$ Hz, C₁₂), 33.75 (d, ${}^{3}J_{PC} = 11.0$ Hz, C₁₁), 33.68 (d, ${}^{4}J_{PC} = 3.3$ Hz, C₁₀), 28.67 (d, ${}^{3}J_{PC} = 3.1$ Hz, C₁₃), 25.46 (d, ${}^{3}J_{PC} = 9.7$ Hz, C₉), 22.73 (C₁₆), 21.55 (C_{14/15}), 17.10 (C_{14/15}), -0.95 (t, ${}^{2}J_{PC} = 4.1$ Hz, C₂₉).

³¹**P**{¹**H**} **NMR** (202 MHz, 298 K, CDCl₃): δ = 29.20.

¹⁹**F NMR** (470 MHz, 298 K, CDCl₃): $\delta = -105.73, -105.91$.

Elemental analysis: calc. for C₃₄H₃₈F₂NO₃PPdS (716.13 g mol⁻¹): C, 57.02; H, 5.35; N, 1.96. Found: C, 56.84; H, 5.48; N, 2.03.

Preparation of complex 4: At -35 °C a solution of PdMe₂(tmeda) (113 mg, 0.4 mmol, 1.0 equiv) in THF (5 mL) was added to a solution of **L4** (203 mg, 0.4 mmol, 1.0 equiv) in THF (5 mL). The reaction mixture was stirred at -35 °C for 1 h and then pyridine (65 mg, 0.8 mmol, 2.0 equiv) was added. The mixture was allowed to warm to room temperature and stirred for 2 h. Volatiles were removed under vacuum to yield a pale yellow solid, which was precipitated from a mixture of THF and *n*-hexane to afford the product (216 mg, 75%).

¹**H** NMR (500 MHz, 298 K, CDCl₃, 7.26 ppm): $\delta = 8.96 \sim 8.94$ (m, 2H, H_{27/31}), 8.18~8.15 (m, 1H, H₆), 7.87~7.79 (m, 2H, H₃ & H₂₉), 7.46 (t, ³*J*_{PH} = 6.6 Hz, 2H, H_{28/30}), 7.34 (t, ³*J*_{PH} = 7.6 Hz, 1H, H₅), 7.22 (t, ³*J*_{PH} = 7.5 Hz, 1H, H₄), 6.09 (dbr, 2H, H_{19/21}), 3.92 (s, 6H, H_{23/25}), 3.80 (s, 3H, H₂₄), 3.11~3.04 (m, 1H, H₇), 2.23~2.16 (m, 1H, H₈), 2.08~2.05 (m, 1H, H₁₃), 1.85~1.78 (dbr, 2H, H₉ & H₁₀), 1.77~1.73 (dbr, 1H, H₁₂), 1.49 (br, 1H, H₁₁), 1.49 (qd, ³*J*_{PH} = 11.8 Hz, ³*J*_{HH} = 5.7 Hz, 1H, H₁₂), 1.19 (qd, ³*J*_{HH} = 12.4 Hz, ⁴*J*_{PH} = 3.0 Hz, 1H, H₉), 1.06 (qd, ³*J*_{HH} = 11.9 Hz, ⁴*J*_{HH} = 3.2 Hz, 1H, H₁₀), 0.89 (d, ³*J*_{HH} = 6.5 Hz, 3H, H₁₆), 0.77 (d, ³*J*_{HH} = 6.7 Hz, 3H, H_{14/15}), 0.22 (d, ³*J*_{PH} = 2.0 Hz, 3H, H₂₆), 0.12 (d, ³*J*_{HH} = 6.7 Hz, 3H, H_{14/15}).

¹³C{¹H} NMR (125 MHz, 298 K, CDCl₃, 77.16 ppm): δ = 164.08 (C₂₀), 162.61 (dbr, C_{18/22}), 150.66 (C_{27/31}), 147.34 (d, ²*J*_{PC} = 13.3 Hz, C₁), 137.84 (C₂₉), 134.05 (C₃), 132.95 (d, ¹*J*_{PC} = 41.4 Hz, C₂), 130.12 (d, ⁴*J*_{PC} = 2.2 Hz, C₅), 129.38 (d, ³*J*_{PC} = 6.1 Hz, C₄), 128.90 (d, ³*J*_{PC} = 7.5 Hz, C₆), 125.21 (d, ⁴*J*_{PC} = 2.6 Hz, C_{28/30}), 99.62 (d, ¹*J*_{PC} = 54.3 Hz, C₁₇), 91.17 (d, ³*J*_{PC} = 2.6 Hz, C_{19/21}), 55.49 (C_{23/25}), 55.44 (C₂₄), 49.00 (d, ²*J*_{PC} = 6.0 Hz, C₈), 43.97 (d, ¹*J*_{PC} = 24.3 Hz, C₇), 40.63 (d, ²*J*_{PC} = 3.9 Hz, C₁₂), 35.33 (d, ⁴*J*_{PC} = 1.8 Hz, C₁₀), 34.07 (d, ³*J*_{PC} = 13.5 Hz, C₁₁), 27.87 (d, ³*J*_{PC} = 4.3 Hz, C₁₃), 25.63 (d, ³*J*_{PC} = 13.8 Hz, C₉), 23.00 (C_{14/15}), 21.84 (C₁₆), 14.97 (C_{14/15}), -3.22 (d, ²*J*_{PC} = 2.5 Hz, C₂₆).

³¹**P**{¹**H**} **NMR** (162 MHz, 298 K, CDCl₃): δ = 24.30.

Elemental analysis: calc. for $C_{31}H_{42}NO_6PPdS$ (694.13 g mol⁻¹): C, 53.64; H, 6.10; N, 2.02. Found: C, 54.00; H, 6.01; N, 2.05.

A general procedure for the homopolymerization of ethylene.

In a typical experiment, a 300 mL stainless pressure reactor connected with a high pressure gas line was firstly dried at 90 $\,^{\circ}$ C under vacuum for at least 1 h. The reactor was then adjusted to the desired polymerization temperature. 98 mL of toluene was added to the reactor under N₂ atmosphere, then the desired amount of Pd catalyst in 2 mL of CH₂Cl₂ was injected into the polymerization system via syringe. With a rapid stirring, the reactor was pressurized and maintained at 20 atm of ethylene. After 0.5 h, the pressure reactor was vented and the polymer was precipitated in ethanol, filtered and dried at 50 $\,^{\circ}$ C for at least 24 h under vacuum.

A general procedure for the copolymerization of polar monomer with ethylene.

In a typical experiment, a 300 mL stainless pressure reactor connected with a high pressure gas line was firstly dried at 90 °C under vacuum for at least 1 h. The reactor was then adjusted to the desired polymerization temperature. 98 mL of toluene with 30 mg of BHT was added to the reactor under N₂ atmosphere, then the desired polar monomer and the desired amount of Pd catalyst in 2 mL of CH₂Cl₂ was injected into the polymerization system via syringe subsequently. With a rapid stirring, the reactor was pressurized and maintained at the desired pressure of ethylene. After 1 h, the pressure reactor was vented and the copolymer was precipitated in ethanol, filtered and dried at 50 °C for at least 24 h under vacuum.

Figure S1. ¹H NMR spectrum (500 MHz, 298 K, CDCl₃) of L1.

Figure S2. ¹³C{¹H} NMR spectrum (125 MHz, 298 K, CDCl₃) of L1.

Figure S4. ¹H NMR spectrum (500 MHz, 298 K, CDCl₃) of L2.

60

40

:00

180

. 160 . 140 120

100

80

0 f1 (ppm)

-20

-60

-80

-40

-100

-120

-140

-160

-20

-180

20

Figure S7. ¹H NMR spectrum (500 MHz, 298 K, CDCl₃) of L3.

Figure S8. ¹³C{¹H} NMR spectrum (125 MHz, 298 K, CDCl₃) of L3.

Figure S10. ¹⁹F NMR spectrum (470 MHz, 298 K, CDCl₃) of **L3**.

Figure S11. ¹H NMR spectrum (500 MHz, 298 K, CDCl₃) of L4.

Figure S12. ${}^{13}C{}^{1}H$ NMR spectrum (125 MHz, 298 K, CDCl₃) of L4.

Figure S14. ¹H NMR spectrum (500 MHz, 298 K, CDCl₃) of complex 1.

Figure S15. ${}^{13}C{}^{1}H$ NMR spectrum (125 MHz, 298 K, CDCl₃) of complex 1.

-25.10

Figure S16. ${}^{31}P{}^{1}H$ NMR spectrum (162 MHz, 298 K, CDCl₃) of complex 1.

Figure S17. ¹H NMR spectrum (500 MHz, 298 K, CD₂Cl₂) of complex 2.

Figure S18. ${}^{13}C{}^{1}H$ NMR spectrum (125 MHz, 298 K, CD₂Cl₂) of complex 2. S20

- 25.19

Figure S20. ¹H NMR spectrum (500 MHz, 298 K, CDCl₃) of complex 3.

5.5

5.0

1.21 1.21 1.00-1 0.95

7.0

6.5

6.0

2.00H

8.5

9.0

9.5

-12)-

34.23

7.5

⁶66.0

8.0

4.5 4.0 f1 (ppm) 1.39H

3.0

3.5

 1.15_{\pm}

2.5

38

2.0

5.5

1.5

3.45[∦] 3.06 3.05[∄]

0.5

0.0

-0.5

4

1.0

Figure S22. ³¹P $\{^{1}H\}$ NMR spectrum (162 MHz, 298 K, CDCl₃) of complex **3**.

Figure S24. ¹H NMR spectrum (500 MHz, 298 K, CDCl₃) of complex 4.

Figure S26. ${}^{31}P{}^{1}H$ NMR spectrum (162 MHz, 298 K, CDCl₃) of complex 4.

Figure S27. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the polymer from table 1, entry 1.

Figure S28. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the polymer from table 1, entry 2.

Figure S29. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the polymer from table 1, entry 5.

Figure S30. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the polymer from table 1, entry 6.

Figure S31. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the polymer from table 1, entry 7.

Figure S32. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the polymer from table 1, entry 8.

Figure S33. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the polymer from table 1, entry 9.

Figure S34. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the polymer from table 1, entry 10.

Figure S35. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the E-MA copolymer from table 2, entry 1.

Figure S36. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the E-MA copolymer from table 2, entry 2.

Figure S37. ¹H NMR spectrum (400 MHz, C₂D₂Cl₄, 100 °C) of the E-MA copolymer from table 2, entry 3.

Figure S38. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the E-MA copolymer from table 2, entry 4.

Figure S39. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the E-MA copolymer from table 2, entry 5.

Figure S40. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the E-MA copolymer from table 2, entry 6.

Figure S41. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the E-MA copolymer from table 2, entry 7.

Figure S42. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the E-MA copolymer from table 2, entry 8.

Figure S43. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the E-*n*BuA copolymer from table 2, entry 9.

Figure S44. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the E-*t*BuA copolymer from table 2, entry 10.

Figure S45. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the E-AA copolymer from table 2, entry 12.

Figure S46. ¹H NMR spectrum (400 MHz, C₂D₂Cl₄, 100 °C) of the E-NIPAA copolymer from table 2, entry 13.

Figure S47. ¹H NMR spectrum (400 MHz, C₂D₂Cl₄, 100 °C) of the E-NIPAA copolymer from table 2, entry 14.

Figure S48. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the E-BVE copolymer from table 2, entry 15.

Figure S49. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the E-BVE copolymer from table 2, entry 16.

Figure S50. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the E-VA copolymer from table 2, entry 18.

Figure S51. ¹H NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the E-AN copolymer from table 2, entry 19.

Figure S52. ¹³C NMR spectrum (400 MHz, $C_2D_2Cl_4$, 100 °C) of the E-MA polymer from table 2, entry 7.

Figure S53. GPC trace of the polymer from table 1, entry 1.

Figure S54. GPC trace of the polymer from table 1, entry 3.

Figure S55. GPC trace of the polymer from table 1, entry 5.

Figure S56. GPC trace of the polymer from table 1, entry 6.

Figure S57. GPC trace of the polymer from table 1, entry 7.

Figure S58. GPC trace of the polymer from table 1, entry 8.

Figure S59. GPC trace of the polymer from table 1, entry 9.

Figure S60. GPC trace of the polymer from table 1, entry 10.

Figure S61. GPC trace of the polymer from table 2, entry 1.

Figure S62. GPC trace of the polymer from table 2, entry 2.

Figure S63. GPC trace of the polymer from table 2, entry 3.

Figure S64. GPC trace of the polymer from table 2, entry 4.

Figure S65. GPC trace of the polymer from table 2, entry 9.

Figure S66. GPC trace of the polymer from table 2, entry 10.

Figure S67. GPC trace of the polymer from table 2, entry 12.

Figure S68. GPC trace of the polymer from table 2, entry 14.

Figure S69. GPC trace of the polymer from table 2, entry 16.

Figure S70. GPC trace of the polymer from table 2, entry 18.

Figure S71. GPC trace of the polymer from table 2, entry 19.

Figure S72. DSC data of the polymer from table 1, entry 1.

Figure S73. DSC data of the polymer from table 1, entry 3.

Figure S74. DSC data of the polymer from table 1, entry 5.

Figure S75. DSC data of the polymer from table 1, entry 6.

Figure S76. DSC data of the polymer from table 1, entry 7.

Figure S77. DSC data of the polymer from table 1, entry 8.

Figure S78. DSC data of the polymer from table 1, entry 9.

Figure S79. DSC data of the polymer from table 1, entry 10.

Figure S80. DSC data of the polymer from table 2, entry 2.

Figure S81. DSC data of the polymer from table 2, entry 3.

Figure S82. DSC data of the polymer from table 2, entry 6.

Figure S83. DSC data of the polymer from table 2, entry 9.

Figure S84. DSC data of the polymer from table 2, entry 10.

Figure S85. DSC data of the polymer from table 2, entry 12.

Figure S86. DSC data of the polymer from table 2, entry 13.

Figure S87. DSC data of the polymer from table 2, entry 16.

Figure S88. DSC data of the polymer from table 2, entry 18.

Figure S89. DSC data of the polymer from table 2, entry 19.

Figure S90. Time-dependence studies of catalysts towards ethylene polymerization.

5 6 1	<i>,</i>	
	L1	3
Formula	$C_{31}H_{38}Cl_2O_5PS$	C ₃₄ H ₃₈ F ₂ NO ₃ PPdS
Formula weight	624.54	716.08
Crystal dimensions (mm ³)	$0.32 \times 0.11 \times 0.08$	0.31 imes 0.20 imes 0.05
Crystal system	hexagonal	orthorhombic
Space group	P 65	P 21 21 21
a (Å)	22.6855(8)	9.1697(6)
b (Å)	22.6855(8)	9.5203(6)
c (Å)	10.7563(7)	36.333(2)
α()	90	90
β ()	90	90
γ(9	120	90
Volume (Å ³)	4793.9(5)	3171.9(4)
Ζ	6	4
<i>T</i> (K)	298(2)	298(2)
$D_{\text{calcd}} (\text{g cm}^{-3})$	1.298	1.500
$\mu (\mathrm{mm}^{-1})$	0.356	0.749
F (000)	1974	1472
No. of rflns. collected	24765	16352
No. of indep. rflns. $/R_{int}$	5002 / 0.0598	5595 / 0.0751
No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$	4358	4534
Data / restraints / parameters	5002 / 1 / 365	5595 / 0 / 388
$R_1 / wR_2 [I_0 > 2\sigma(I_0)]$	0.0514 / 0.1419	0.0468 / 0.0837
R_1/wR_2 (all data)	0.0623 / 0.1592	0.0662 / 0.0898
GOF (on F^2)	0.934	0.964
Largest diff. peak and hole (e $Å^{-3}$)	0.312 / -0.436	0.674 / -0.412
CCDC No.	1868503	1868504

Table S1. Crystallographic data for L1, and 3.

(1) SMART, version 5.054; Bruker AXS Inc.: Madison, WI, 2000.

(2) SAINT and SADABS, version 6.22; Bruker AXS Inc.: Madison, WI, 2000.

(3) a) G. M. Sheldrick, SHELXL-2014, Program for refinement of crystal structures, University of Gätingen, Germany, 2014. b) G. M. Sheldrick, SHELXS-2014, Program for solution of crystal structures, University of Gätingen, Germany, 2014.

(4) Spek, A. L. Acta Cryst. 2015, C71, 9-18.

(5) H. Brandes, R. Goddard, P. W. Jolly, C. Krüger, R. Mynott, and G. Wilke, *Z. Naturforsch.* **1984**, *39b*, 1139-1150.

(6) P. Wucher, V. Goldbach, S. Mecking, Organometallics 2013, 32, 4516-4522.

(7) B. Neuwalda, L. Caporasob, L. Cavalloc, S. Mecking, J. Am. Chem. Soc. 2013, 135, 1026-1036.

(8) J. E. Milne, S. L. Buchwald, J. Am. Chem. Soc. 2004, 126, 13028-13032.