Tailorable Degradation of pH-Responsive All Polyether Micelles via Copolymerisation with Varying Acetal Groups

Jaeeun Song,^{a†} Eunbyul Hwang,^{a†} Yungyeong Lee,^a L. Palanikumar,^a Soo-Hyung Choi,^b Ja-

Hyoung Ryu,^a and Byeong-Su Kim^c*

^aDepartment of Chemistry, Ulsan National Institute of Science and Technology (UNIST),

Ulsan 44919, Republic of Korea

^bDepartment of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea

^cDepartment of Chemistry, Yonsei University, Seoul 03722, Republic of Korea

[†]These authors contributed equally to this work.

E-mail: bskim19@yonsei.ac.kr

Table of Contents (TOC) graphic

Fig. S1 GPC elution traces in DMF using a RI signal and PMMA as a standard of PEG_{114} -*b*-P(EEGE-*co*-TGE)_{m/n} copolymers (**T0** – **T4**).

Fig. S2 DSC thermograms for PEG_{114} -*b*-P(EEGE-*co*-TGE)_{m/n} copolymers (T0 – T4). The melting temperature of PEG block was observed at 50 – 54 °C.

Fig. S3 Excitation spectra of pyrene in aqueous solution and determination of CMC for PEG₁₁₄*b*-P(EEGE-*co*-TGE)_{27/0} (**T0**) micelles ($\lambda_{em} = 372 \text{ nm}$). CMC was calculated *via* measurements of *I*₃₃₉/*I*₃₃₂ as a function of polymer concentration using the fluorescence excitation spectra of pyrene.

Fig. S4 Excitation spectra of pyrene in aqueous solution and determination of CMC for PEG₁₁₄*b*-P(EEGE-*co*-TGE)_{21/6} (T1) micelles ($\lambda_{em} = 372 \text{ nm}$). CMC was calculated *via* measurements of *I*₃₃₉/*I*₃₃₂ as a function of polymer concentration using the fluorescence excitation spectra of pyrene.

Fig. S5 Excitation spectra of pyrene in aqueous solution and determination of CMC for PEG₁₁₄*b*-P(EEGE-*co*-TGE)_{14/14} (T2) micelles ($\lambda_{em} = 372$ nm). CMC was calculated *via* measurements of *I*₃₃₉/*I*₃₃₂ as a function of polymer concentration using the fluorescence excitation spectra of pyrene.

Fig. S6 Excitation spectra of pyrene in aqueous solution and determination of CMC for PEG₁₁₄*b*-P(EEGE-*co*-TGE)_{7/19} (T3) micelles ($\lambda_{em} = 372$ nm). CMC was calculated *via* measurements of *I*₃₃₉/*I*₃₃₂ as a function of polymer concentration using the fluorescence excitation spectra of pyrene.

Fig. S7 Excitation spectra of pyrene in aqueous solution and determination of CMC for PEG₁₁₄*b*-P(EEGE-*co*-TGE)_{0/27} (T4) micelles ($\lambda_{em} = 372 \text{ nm}$). CMC was calculated *via* measurements of I_{339}/I_{332} as a function of polymer concentration using the fluorescence excitation spectra of pyrene.

Fig. S8 Relationship of CMC values with respect to the PEG_{114} -b-P(EEGE-co- $TGE)_{m/n}$ copolymer (T0 – T4) micelles.

Fig. S9 Temperature-dependent count rate for all micelles (T0 - T4) measured by DLS.

Fig. S10 Emission spectra of Nile Red in acetone after freeze-drying of aqueous solution of all T0 – T4 micelles for the calculation of encapsulation efficiency ($\lambda_{ex} = 480$ nm).

Fig. S11 Changes in excitation spectra of pyrene encapsulated by T0 - T4 micelles in pH 7.4 condition. The concentrations of all polymers are fixed to 0.10 mg/mL.

Fig. S12 Changes in excitation spectra of pyrene encapsulated by T0 - T4 micelles in pH 5.0 condition. The concentrations of all polymers are fixed to 0.10 mg/mL.

Fig. S13 *In vitro* FRET studies for T2 micelle after incubation in different time by live imaging in HeLa cells. The green and red colours represent DiO and DiI signals, respectively, and the yellow colour indicates overlapped signals of the both FRET dyes. Excitation and emission wavelength for DiO was 488 nm and 535 nm, and that for DiI was set to 543 nm and 620 nm, respectively. Scale bars: $10 \mu m$.

Fig. S14 *In vitro* FRET studies for T3 micelle after incubation in different time by live imaging in HeLa cells. The green and red colours represent DiO and DiI signals, respectively, and the yellow colour indicates overlapped signals of the both FRET dyes. Excitation and emission wavelength for DiO was 488 nm and 535 nm, and that for DiI was set to 543 nm and 620 nm, respectively. Scale bars: $10 \mu m$.

Fig. S15 *In vitro* FRET studies for T4 micelle after incubation in different time by live imaging in HeLa cells. The green and red colours represent DiO and DiI signals, respectively, and the yellow colour indicates overlapped signals of the both FRET dyes. Excitation and emission wavelength for DiO was 488 nm and 535 nm, and that for DiI was set to 543 nm and 620 nm, respectively. Scale bars: $10 \mu m$.

Fig. S16 Expanded ¹H NMR spectra of PEG_{114} -*b*-P(EEGE-*co*-TGE)_{m/n} copolymers (**T0** – **T4**), displaying the clear disappearance of the residual phosphazene base, *t*-BuP₄.