Electronic Supplementary Information for

Multi-stimuli responsive poly(amidoamine) dendrimers with peripheral *N*dialkylaminoethyl carbamate moieties

Qi-Song Tong^{1,2}, Wei Xu^{1,2}, Qiu-Yue Huang², Ya-Ru Zhang², Xiao-Xiao Shi², Hua Huang^{1,5}, Hong-Jun Li^{2,5}, Jin-Zhi Du^{1,2,6*}, Jun Wang^{1,2,3,4,6}

¹School of Biomedical Science and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, China

²Institutes for Life Sciences, and School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China

³National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China

⁴Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China

⁵Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China

⁶Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China

Synthesis of 2-dipropylamino ethanol (DPEA)

Ethanolamine (6.1000 g, 0.1 mol) and Na₂CO₃ (31.8000 g, 0.3 mol) were dissolved in 100 mL acetonitrile, to which bromopropane (24.6000 g, 0.2 mol) in 50 mL acetonitrile was added dropwise. The reaction mixture was stirred at 40 °C for 120 h. The viscous solution was filtered to remove the precipitates including NaBr and unreacted Na₂CO₃. Acetonitrile was removed by rotary evaporation. The residual was dissolved by dichloromethane, and washed with saturated saline solution three times to remove unreacted ethanolamine. The organic layer was collected, dried over MgSO₄, and filtered. After removal of dichloromethane, the residue was distilled under vacuo as a colorless liquid to obtain DPEA. Yield: 48%. ¹H NMR (TMS, CDCl₃, ppm): 3.55 (t, 2H, -OCH₂CH₂N-), 2.60 (t, 2H, -OCH₂CH₂N-), 2.40 (t, 4H, -N(CH₂CH₂CH₃)₂), 1.45 (m, 4H, -N(CH₂CH₂CH₃)₂), 0.93 (t, 6H, -N(CH₂CH₂CH₃)₂).

Figure S1. ¹H NMR spectrum of DPEA in CDCl₃.

Figure S2. Dynamic light scattering (DLS) measurement of G5-PAMAM, and its derivative G5-C5A₉₀ at 35 °C (below LCST) and at 55 °C (above LCST).

Synthesis of N-Dialkylaminoethyl Carbamate (DMEA-CDI, DEPA-CDI, and C5A-CDI)

DMEA-CDI, DPEA-CDI, and C5A-CDI were synthesized following similar procedures as the synthesis of C6A-CDI. Their structures were verified by ¹H NMR as follows.

DMEA-CDI: Yield 48%. ¹H NMR (TMS, CDCl₃, ppm): 8.15 (s, 1H, -NC*H*N-), 7.38 (s, 1H, -NCH₂CH₂N-), 7.02 (s, 1H, -NCH₂CH₂N-), 4.50 (t, 2H, -OCH₂CH₂N-), 2.72 (t, 2H, -OCH₂CH₂N-), 2.28 (s, 6H, -N(CH₃)₂).

DPEA-CDI: Yield 90%. ¹H NMR (TMS, CDCl₃, ppm): 8.15 (s, 1H, -NC*H*N-), 7.38 (s, 1H, -NCH₂CH₂N-),7.02 (s, 1H, -NCH₂CH₂N-), 4.45 (t, 2H, -OCH₂CH₂N-), 2.83 (t, 2H, -OCH₂CH₂N-), 2.45 (t, 4H, -N(CH₂CH₂CH₃)₂), 1.45 (m, 4H, -N(CH₂CH₂CH₃)₂), 0.90 (t, 6H, -N(CH₂CH₂CH₃)₂).

C5A-CDI: Yield 85%. ¹H NMR (TMS, CDCl₃, ppm): 8.15 (s, 1H, -NC*H*N-), 7.38 (s, 1H, -NCH₂C*H*₂N-),7.02 (s, 1H, -NC*H*₂CH₂N-), 4.55 (t, 2H, -OC*H*₂CH₂N-), 2.90 (t, 2H, -OCH₂C*H*₂N-), 2.62 (t, 4H, -N(C*H*₂CH₂)₂),1.80 (m, 4H, -N(C*H*₂CH₂)₂).

DPEA-CDI

Synthesis of N-dialkylaminoethyl carbamate modified dendrimers

All other modified dendrimers such as G4-DMEA₄₅, G4-DPEA₄₅, G4-C5A₄₅, G4-C6A₂₁, G4-C6A₄₅, G5-DEEA₉₀, G5-C5A₉₀, G5-C6A₉₀, and G5-C6A₄₅ were prepared following similar procedure of G4-DEEA₄₅, and their substitution numbers were calculated using the same method according to their ¹H NMR spectra shown below.

G4-DMEA₄₅: Yield 90%. ¹H NMR (TMS, CDCl₃, ppm): 4.10 (-COOCH₂CH₂N-), 3.25 (-CONHCH₂CH₂-), 2.20-3.00 (-OCH₂CH₂N-, and all other protons from PAMAM), 2.20 (-N(CH₃)₂).

G4-DPEA₄₅: Yield 95%. ¹H NMR (TMS, CDCl₃, ppm): 4.05 (-COOCH₂CH₂N-), 3.25 (-CONHCH₂CH₂- from PAMAM), 2.20-3.00 (-OCH₂CH₂N-, -N(CH₂CH₂CH₃)₂, and all other protons from PAMAM), 1.45 (-N(CH₂CH₂CH₃)₂), 0.90 (-N(CH₂CH₂CH₃)₂)

G4-C5A₄₅: Yield 92%. ¹H NMR (TMS, CDCl₃, ppm): 4.15 (-COOCH₂CH₂N-), 3.25

(-CONHC H_2 CH₂- from PAMAM), 2.20-3.00 (-OCH₂C H_2 N-, -N(C H_2 CH₂)₂, and all other protons from PAMAM), 1.75(-N(CH₂C H_2)₂).

G4-C5A₆₄: Yield 83%. ¹H NMR (TMS, CDCl₃, ppm): 4.15 (-COOC*H*₂CH₂N-), 3.25 (-CONHC*H*₂CH₂- from PAMAM), 2.20-3.00 (-OCH₂C*H*₂N-, -N(*CH*₂CH₂)₂, and all other protons from PAMAM), 1.75(-N(CH₂C*H*₂)₂).

G4-DEEA₆₄: Yield 84%. ¹H NMR (TMS, CDCl₃, ppm): 4.10 (-COOC H_2 CH₂N-), 3.25(-CONHC H_2 CH₂- from PAMAM), 2.20-3.00 (-OCH₂C H_2 N-, -N(C H_2 CH₃)₂, and all other protons from PAMAM), 1.02 (-N(CH₂C H_3)₂).

G4-C6A₄₅: Yield 90%. ¹H NMR (TMS, CDCl₃, ppm): 4.15 (-COOCH₂CH₂N-), 3.25 (-CONHCH₂CH₂- from PAMAM), 2.20-3.00 (-OCH₂CH₂N-, -N(CH₂CH₂CH₂)₂, and all other protons from PAMAM), 1.40-1.60 (-(CH₂CH₂)₂CH₂).

G4-C6A₂₁: Yield 90%. ¹H NMR (TMS, D₂O, ppm): 4.15 (-COOCH₂CH₂N-), 3.25 (-CONHCH₂CH₂- from PAMAM), 2.20-3.00 (-OCH₂CH₂N-, -N(CH₂CH₂CH₂)₂, and all other protons from PAMAM), 1.40-1.60 (-(CH₂CH₂)₂CH₂).

G5-DEEA₉₀: Yield 80%. ¹H NMR (TMS, CDCl₃, ppm): 4.10 (-COOCH₂CH₂N-), 3.25 (-CONHCH₂CH₂- from PAMAM), 2.20-3.00 (-OCH₂CH₂N-, -N(CH₂CH₃)₂, and all other protons from PAMAM), 1.02 (-N(CH₂CH₃)₂).

G5-C5A₉₀: Yield 87%. ¹H NMR (TMS, CDCl₃, ppm): 4.15 (-COOC*H*₂CH₂N-), 3.25 (-CONHC*H*₂CH₂- from PAMAM), 2.20-3.00 (-OCH₂C*H*₂N-, -N(C*H*₂CH₂)₂, and all other protons from PAMAM), 1.75(-N(CH₂C*H*₂)₂).

G5-C6A₉₀: Yield 85%. ¹H NMR (TMS, CDCl₃, ppm): 4.15 (-COOCH₂CH₂N-), 3.25

(-CONHC H_2 CH₂- from PAMAM), 2.20-3.00 (-OCH₂C H_2 N-, -N(C H_2 CH₂CH₂)₂, and all other protons from PAMAM), 1.40-1.60 (-(CH₂C H_2)₂C H_2).

G5-C6A₄₅: Yield 90%. ¹H NMR (TMS, CDCl₃, ppm): 4.15 (-COOC*H*₂CH₂N-), 3.25 (-CONHC*H*₂CH₂- from PAMAM), 2.20-3.00 (-OCH₂C*H*₂N-, -N(C*H*₂CH₂CH₂)₂, and all other protons from PAMAM), 1.40-1.60 (-(CH₂C*H*₂)₂C*H*₂).

G4-DMEA₄₅

G4-DPEA₄₅

- 7.26

-7.26

G4-DEEA₆₄

G5-DEEA₉₀

5.0 **Chemical Shift**

Sample	PAMAM Generation	Substitution Number of <i>N</i> -dialkylaminoethyl moieties ^{<i>a</i>}	$T_{\rm cp} (^{\circ}{\rm C})^b$
G4-DMEA ₄₅	4	45	-
G4-DEEA ₄₅	4	45	65
G4-DEEA ₆₄	4	64	38
G4-DPEA ₄₅	4	45	-
G4-C5A ₄₅	4	45	68
G4-C5A ₆₄	4	64	44
G4-C6A ₂₁	4	21	-
G4-C6A ₄₅	4	45	21
G4-C6A ₆₄	4	64	9
G5-C6A ₄₅	5	45	-
G5-C6A ₇₀	5	70	44
G5-DEEA ₉₀	5	90	68
G5-C5A ₉₀	5	90	53
G5-C6A ₉₀	5	90	20

Table S1. Structural information and thermoresponsive properties of the modified

 PAMAM dendrimers.

^a Determined from ¹ H NMR; ^b Determined from UV measurement.