## **Supporting Information for:**

# Synthesis of star thermoresponsive amphiphilic block copolymer nano-assemblies and topology effect on thermoresponse

Mengjiao Cao,<sup>a</sup> Huijun Nie,<sup>a</sup> Yuwen Hou,<sup>a</sup> Guang Han\*<sup>,b</sup> and Wangqing Zhang\*<sup>,a,c</sup>

<sup>a</sup> Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China. E-mail: wqzhang@nankai.edu.cn, Fax: 86-22-23503510.

<sup>b</sup> State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd, Beijing 100123, China.

<sup>c</sup> Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.

### 1. Equations

$$M_{\rm n,th} = \frac{[\rm monomer]_0 \times M_{\rm monomer}}{[\rm RAFT]_0} \times conversion + M_{\rm RAFT} \qquad (S1)$$

$$\frac{n_1}{n_3} = \frac{M_3}{M_1} \times \frac{M_{n,PS_1} D_3^3}{M_{n,PS_3} D_1^3}$$
(S2)

#### 2. Table

Table S1. Summary of linear and star block copolymers of (PNIPAM-*b*-PS)<sub>n</sub> with shorter PS blocks.

| (PNIPAM-b-PS) <sub>n</sub>                         | [St] <sub>0</sub> :[CTA] <sub>0</sub> :[I] <sub>0</sub> | Time | Conv. <sup>a</sup> | $M_{\rm n}$ (kg/mol)  |                 |                 | De   |
|----------------------------------------------------|---------------------------------------------------------|------|--------------------|-----------------------|-----------------|-----------------|------|
|                                                    |                                                         | (h)  | (%)                | $M_{ m n,th}^{\ \ b}$ | $M_{n,GPC}^{c}$ | $M_{n,NMR}^{d}$ | D    |
| PNIPAM <sub>150</sub> - <i>b</i> -PS <sub>20</sub> | 100:1:0.2                                               | 9    | 20                 | 19.3                  | 19.6            | 20.1            | 1.20 |
| $(PNIPAM_{140}-b-PS_{15})_2$                       | 200:1:0.4                                               | 12   | 15                 | 35.2                  | 29.2            | 37.5            | 1.24 |
| $(PNIPAM_{150}-b-PS_{18})_3$                       | 300:1:0.6                                               | 10   | 18                 | 57.1                  | 40.4            | 58.9            | 1.26 |
| $(PNIPAM_{136}-b-PS_{20})_4$                       | 400:1:0.8                                               | 10   | 20                 | 70.7                  | 51.3            | 72.8            | 1.24 |

<sup>*a*</sup> Monomer conversion determined by UV-vis.<sup>*b*</sup> Theoretical molecular weight determined by monomer conversion according to eq. S1. <sup>*c*</sup> Molecular weight determined by GPC. <sup>*d*</sup> Molecular weight determined by <sup>1</sup>H NMR. <sup>*e*</sup>  $D(M_w/M_n)$  determined by GPC.

#### 3. Figures



Figure S1. The <sup>1</sup>H NMR spectra (A) and GPC traces (B) of PNIPAM<sub>150</sub>-b-PS<sub>20</sub>, (PNIPAM<sub>140</sub>-b-PS<sub>15</sub>)<sub>2</sub>, (PNIPAM<sub>150</sub>-b-PS<sub>18</sub>)<sub>3</sub> and (PNIPAM<sub>136</sub>-b-PS<sub>20</sub>)<sub>4</sub>.



**Figure S2**. Temperature-dependent transmittance of 0.20 wt% solution of the PNIPAM<sub>150</sub>-TTC, (PNIPAM<sub>140</sub>-TTC)<sub>2</sub>, (PNIPAM<sub>150</sub>-TTC)<sub>3</sub>, (PNIPAM<sub>136</sub>-TTC)<sub>4</sub>.



**Figure S3**. The evolution of scattering intensity with temperature of 0.20 wt% aqueous dispersions of PNIPAM<sub>150</sub>-*b*-PS<sub>90</sub>, (PNIPAM<sub>140</sub>-*b*-PS<sub>147</sub>)<sub>2</sub>, (PNIPAM<sub>150</sub>-*b*-PS<sub>108</sub>)<sub>3</sub> and (PNIPAM<sub>136</sub>-*b*-PS<sub>84</sub>)<sub>4</sub>.



**Figure S4**. Temperature-dependent transmittance of 0.01 wt% aqueous dispersions of linear PNIPAM<sub>150</sub>-*b*-PS<sub>20</sub>, 2-arm (PNIPAM<sub>140</sub>-*b*-PS<sub>15</sub>)<sub>2</sub>, 3-arm (PNIPAM<sub>150</sub>-*b*-PS<sub>18</sub>)<sub>3</sub>, and 4-arm (PNIPAM<sub>136</sub>-*b*-PS<sub>20</sub>)<sub>4</sub>.