Sustainable Near UV-curable Acrylates Based on Natural Phenolics for Stereolithography 3D Printing

Rui Ding[†], Yuyang Du[‡], Rebecca Goncalves[§], Lorraine Francis[‡], Theresa M. Reineke^{*,†}

[†]Department of Chemistry and Center for Sustainable Polymers, University of Minnesota, Minneapolis

[‡]Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis

§Department of Chemistry, The College of New Jersey, New Jersey

Supplementary Information

Table of Contents

References

Figures:

S1-S4 ¹H NMR spectra of synthesized monomers

S5-S8 ATR-FTIR spectra of synthesized monomers

S9-S10 DSC thermograms of synthesized monomers

S11 Reaction kinetics of 3,6-dioxa-1,8-octanedithiol eugenol determined by ¹H NMR

S12 Proposed mechanism of radical addition between 3,6-dioxa-1,8-octanedithiol and eugenol.

S13 real-time FTIR examples of resin formulations

S14 photorheology examples of resin formulations

S15-17 TGA of photocured polymers

S19-20 Photopolymerization kinetic profiles of resin formulations obtained from real-time FTIR

S21-23 DMA of photocured polymers

Tables:

S1 Composition profiles of binary and ternary formulations of (meth)acrylates.

S2 Dynamic mechanical properties and cross-link densities of all photocured polymers.

Figure S1. ¹H NMR spectrum of guaiacol methacrylate (G), in CDCl₃.

Figure S2. ¹H NMR spectrum of vanillyl alcohol methacrylate (V), in CDCl₃.

Figure S3. ¹H NMR spectrum of 3,6-dioxa-1,8-octanedithiol eugenol, in CDCl₃.

Figure S4. ¹H NMR spectrum of 3,6-dioxa-1,8-octanedithiol eugenol acrylate (E), in CDCl₃.

Figure S5. ATR-FTIR spectrum of guaiacol methacrylate (G). A droplet of liquid sample was spread on the ATR diamond crystal for measurement at room temperature.

Figure S6. ATR-FTIR spectrum of vanillyl alcohol methacrylate (V). Sample was melted into a liquid and added as a droplet to the ATR diamond crystal for measurement at room temperature.

Figure S7. ATR-FTIR spectrum of 3,6-dioxa-1,8-octanedithiol eugenol. A droplet of liquid sample was spread on the ATR diamond crystal for measurement at room temperature.

Figure S8. ATR-FTIR spectrum of 3,6-dioxa-1,8-octanedithiol eugenol acrylate (E). A droplet of liquid sample was spread on the ATR diamond crystal for measurement at room temperature.

Figure S9. DSC thermogram of 3,6-dioxa-1,8-octanedithiol eugenol acrylate (**E**) at a heating rate of 10 °C/min.

Figure S10. DSC thermogram of vanillyl alcohol methacrylate (V) at a heating rate of 10 °C/min.

Figure S11. Reaction kinetic study of 3,6-dioxa-1,8-octanedithiol (DODT)-eugenol radical addition initiated by UV irradiation determined by ¹H NMR spectroscopy. Three reaction mixtures with a stoichiometric ratio (thiol: ene = 1:2) were compared: DODT + eugenol with no catalyst (black); DODT + eugenol with 0.5 wt.% 2,2-dimethoxy-2-phenylacetophenone (DMPA) as the catalyst; DODT + methyl eugenol with 0.5 wt% DMPA as the catalyst. The solid curves represent the consumption of reactants: (×) denotes the protons - CH₂-CH=CH₂ at 5.03-5.09 ppm from eugenol; (□) denotes the protons -CH₂-CH=CH₂ at 5.89-5.99 ppm from eugenol; (○) denotes the protons -SH at 1.56-1.65 ppm from DODT. The dash curves represent the conversion of the thioether product: (◊) denotes the protons -CH₂-CH₂-S-(CH₂)₂-O- at 1.85-1.90 ppm from the thioether.

Figure S12. Proposed mechanism of radical addition between 3,6-dioxa-1,8-octanedithiol and eugenol. The phenolic hydroxyl group causes additional routes to transfer the thiyl and carbon radical that retard the thiolene reaction rate. The final product is only thioether.

Figure S13. Magnified real-time FTIR spectra of different resin formulation examples before and after irradiation for 600 s: (a) **E**, (b) **GE** 75-25, (3) **GET** 60-20-20, (d) **GEV** 60-20-20. The peak at 1636 cm⁻¹ is assigned to the (meth)acrylate C=C double bond absorption, which decrease as a function of irradiation time. The peak at 1604 cm⁻¹ is assigned to the aromatic absorption, which remains constant with irradiation and thus used as reference peak for the calculating the conversion. The light intensity is 2 mW/cm².

Figure S14. Photorheology of different resin formulation examples showing storage shear modulus and loss shear modulus as a function of time: (a) **E**, (b) **GE** 75-25, (3) **GET** 60-20-20, (d) **GEV** 60-20-20. The purple band indicates the duration of irradiation, which is triggered at 20 s after the rheology measurement started. The light intensity is 5 mW/cm².

Figure S15. TGA of pGE binary polymers at different G:E ratios under a nitrogen atmosphere.

Figure S16. TGA of pGET terpolymers at different G:E ratios under a nitrogen atmosphere.

Figure S17. TGA of pGEV terpolymers at different G:E ratios under a nitrogen atmosphere.

Figure S18. Photopolymerization kinetic profiles of **GE** binary polymers at different **G:E** ratios determined by real time-FTIR. (a) C=C conversion as a function of UV irradiation time (b) Polymerization rate as a function of monomer conversion at irradiation intensity of 2 mW/cm².

Figure S19. Photopolymerization kinetic profiles of **GET** ternary formulations at different **G:E** ratios determined by real time-FTIR. (a) C=C conversion as a function of UV irradiation time (b) Polymerization rate as a function of monomer conversion at irradiation intensity of 2 mW/cm^2 .

Figure S20. Photopolymerization kinetic profiles of **GEV** ternary formulations at different **G:E** ratios determined by real time-FTIR. (a) C=C conversion as a function of UV irradiation time (b) Polymerization rate as a function of monomer conversion at irradiation intensity of 2 mW/cm^2 .

Figure S21. DMA of p**GE** binary polymers at different **G:E** ratios (a) storage modulus E' and (b) dissipation peak tan δ as a function of temperature.

Figure S22. DMA of p**GET** terpolymers at different **G:E** ratios (a) storage modulus *E* ' and (b) dissipation peak tan δ as a function of temperature.

Figure S23. DMA of p**GEV** terpolymers at different **G:E** ratios (a) storage modulus *E* ' and (b) dissipation peak tan δ as a function of temperature.

Formulation	Function-	G		Е		
	ality	Mol%	Wt %	Mol%	Wt %	
GE 25-75	1.75	25	9.4	75	90.6	
GE 50-50	1.5	50	23.7	50	76.3	
GE 75-25	1.25	75	48.2	25	51.8	

Table S1. Composition profiles of binary and ternary formulations of (meth)acrylates.

Formulation	Function-ality	G		Е		Т	
		Mol%	Wt %	Mol%	Wt %	Mol%	Wt %
GET 20-60-20	2	20	8.0	60	77.8	20	14.2
GET 40-40-20	1.8	40	19.6	40	63.1	20	17.3
GET 53-27-20	1.67	53	30.3	27	49.6	20	20.1
GET 60-20-20	1.6	60	37.6	20	40.3	20	22.1

Formulation	Function-ality	G		Е		V	
		Mol%	Wt %	Mol%	Wt %	Mol%	Wt %
GEV 20-60-20	1.8	20	8.2	60	79.4	20	12.4
GEV 40-40-20	1.6	40	20.1	40	64.7	20	15.2
GEV 53-27-20	1.47	53	31.1	27	51.1	20	17.8
GEV 60-20-20	1.4	60	38.8	20	41.7	20	19.5

Table S2. Dynamic mechanical properties and cross-link densities of all photocured polymers.

Polymer	$T_{(0C)}$	tore S	E' at 25 °C E' at T_g +50		v _e (×10 ³	Ma (lag/mal)
	$I_g(C)$	$\tan o_{\max}$	(GPa)	°C (MPa)	mol/m ³)	wic (kg/mol)
pE	45.0	0.31	0.96	62	3.9	0.15
pGE 25-75	57.3	0.33	1.38	53	6.8	0.18
pGE 50-50	65.4	0.51	1.60	27	5.9	0.36
pGE 75-25	79.7	0.85	2.70	14	2.8	0.72
pGET 20-60-20	103.2	0.15	2.12	153	14.4	0.07
pGET 40-40-20	106.3	0.19	2.39	108	10.1	0.10
pGET 53-27-20	120.3	0.22	2.59	96	8.7	0.12
pGET 60-20-20	130.9	0.22	2.51	77	6.8	0.15
pGEV 20-60-20	92.4	0.21	2.28	120	11.6	0.09
pGEV 40-40-20	84.8	0.29	2.28	64	6.3	0.16
pGEV 53-27-20	95.8	0.36	2.86	45	4.3	0.23
pGEV 60-20-20	107.5	0.41	3.40	42	3.9	0.26