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Figure S1. 1H NMR spectrum of guaiacol methacrylate (G), in CDCl3.

Figure S2. 1H NMR spectrum of vanillyl alcohol methacrylate (V), in CDCl3. 



Figure S3. 1H NMR spectrum of 3,6-dioxa-1,8-octanedithiol eugenol, in CDCl3.

Figure S4. 1H NMR spectrum of 3,6-dioxa-1,8-octanedithiol eugenol acrylate (E), in CDCl3.



Figure S5. ATR-FTIR spectrum of guaiacol methacrylate (G). A droplet of liquid sample was spread on the 
ATR diamond crystal for measurement at room temperature.

Figure S6. ATR-FTIR spectrum of vanillyl alcohol methacrylate (V). Sample was melted into a liquid and 
added as a droplet to the ATR diamond crystal for measurement at room temperature.



Figure S7. ATR-FTIR spectrum of 3,6-dioxa-1,8-octanedithiol eugenol. A droplet of liquid sample was 
spread on the ATR diamond crystal for measurement at room temperature.

Figure S8. ATR-FTIR spectrum of 3,6-dioxa-1,8-octanedithiol eugenol acrylate (E). A droplet of liquid 
sample was spread on the ATR diamond crystal for measurement at room temperature.



 

Figure S9. DSC thermogram of 3,6-dioxa-1,8-octanedithiol eugenol acrylate (E) at a heating rate of 10 
oC/min.

Figure S10. DSC thermogram of vanillyl alcohol methacrylate (V) at a heating rate of 10 oC/min.



Figure S11. Reaction kinetic study of 3,6-dioxa-1,8-octanedithiol (DODT)-eugenol radical addition initiated 
by UV irradiation determined by 1H NMR spectroscopy. Three reaction mixtures with a stoichiometric ratio 
(thiol: ene = 1:2) were compared: DODT + eugenol with no catalyst (black); DODT + eugenol with 0.5 wt.% 
2,2-dimethoxy-2-phenylacetophenone (DMPA) as the catalyst; DODT + methyl eugenol with 0.5 wt% 
DMPA as the catalyst. The solid curves represent the consumption of reactants: (×) denotes the protons -
CH2-CH=CH2 at 5.03-5.09 ppm from eugenol; (□) denotes the protons -CH2-CH=CH2 at 5.89-5.99 ppm 
from eugenol; (○) denotes the protons -SH at 1.56-1.65 ppm from DODT. The dash curves represent the 
conversion of the thioether product: (◊) denotes the protons -CH2-CH2-S-(CH2)2-O- at 1.85-1.90 ppm from 
the thioether.



Figure S12. Proposed mechanism of radical addition between 3,6-dioxa-1,8-octanedithiol and eugenol. The 
phenolic hydroxyl group causes additional routes to transfer the thiyl and carbon radical that retard the thiol-
ene reaction rate. The final product is only thioether.



Figure S13. Magnified real-time FTIR spectra of different resin formulation examples before and after 
irradiation for 600 s: (a) E, (b) GE 75-25, (3) GET 60-20-20, (d) GEV 60-20-20. The peak at 1636 cm-1 is 
assigned to the (meth)acrylate C=C double bond absorption, which decrease as a function of irradiation time. 
The peak at 1604 cm-1 is assigned to the aromatic absorption, which remains constant with irradiation and 
thus used as reference peak for the calculating the conversion. The light intensity is 2 mW/cm2.



Figure S14. Photorheology of different resin formulation examples showing storage shear modulus and loss 
shear modulus as a function of time: (a) E, (b) GE 75-25, (3) GET 60-20-20, (d) GEV 60-20-20. The purple 
band indicates the duration of irradiation, which is triggered at 20 s after the rheology measurement started. 
The light intensity is 5 mW/cm2.



Figure S15. TGA of pGE binary polymers at different G:E ratios under a nitrogen atmosphere. 

Figure S16. TGA of pGET terpolymers at different G:E ratios under a nitrogen atmosphere.



Figure S17. TGA of pGEV terpolymers at different G:E ratios under a nitrogen atmosphere.



Figure S18. Photopolymerization kinetic profiles of GE binary polymers at different G:E ratios determined 
by real time-FTIR. (a) C=C conversion as a function of UV irradiation time (b) Polymerization rate as a 
function of monomer conversion at irradiation intensity of 2 mW/cm2.



Figure S19. Photopolymerization kinetic profiles of GET ternary formulations at different G:E ratios 
determined by real time-FTIR. (a) C=C conversion as a function of UV irradiation time (b) Polymerization 
rate as a function of monomer conversion at irradiation intensity of 2 mW/cm2.



Figure S20. Photopolymerization kinetic profiles of GEV ternary formulations at different G:E ratios 
determined by real time-FTIR. (a) C=C conversion as a function of UV irradiation time (b) Polymerization 
rate as a function of monomer conversion at irradiation intensity of 2 mW/cm2.



Figure S21. DMA of pGE binary polymers at different G:E ratios (a) storage modulus E’ and (b) dissipation 
peak tan δ as a function of temperature.



Figure S22. DMA of pGET terpolymers at different G:E ratios (a) storage modulus E’ and (b) dissipation 
peak tan δ as a function of temperature.



Figure S23. DMA of pGEV terpolymers at different G:E ratios (a) storage modulus E’ and (b) dissipation 
peak tan δ as a function of temperature.



Table S1. Composition profiles of binary and ternary formulations of (meth)acrylates.

G E
Formulation

Function-

ality Mol% Wt % Mol% Wt %

GE 25-75 1.75 25 9.4 75 90.6

GE 50-50 1.5 50 23.7 50 76.3

GE 75-25 1.25 75 48.2 25 51.8

G E T
Formulation Function-ality

Mol% Wt % Mol% Wt % Mol% Wt %

GET 20-60-20 2 20 8.0 60 77.8 20 14.2

GET 40-40-20 1.8 40 19.6 40 63.1 20 17.3

GET 53-27-20 1.67 53 30.3 27 49.6 20 20.1

GET 60-20-20 1.6 60 37.6 20 40.3 20 22.1

G E V
Formulation Function-ality

Mol% Wt % Mol% Wt % Mol% Wt %

GEV 20-60-20 1.8 20 8.2 60 79.4 20 12.4

GEV 40-40-20 1.6 40 20.1 40 64.7 20 15.2

GEV 53-27-20 1.47 53 31.1 27 51.1 20 17.8

GEV 60-20-20 1.4 60 38.8 20 41.7 20 19.5

Table S2. Dynamic mechanical properties and cross-link densities of all photocured polymers.

Polymer Tg (oC) tan δ max
E' at 25 oC 

(GPa)
E' at Tg+50 

oC (MPa)
ve (×103 
mol/m3)

Mc (kg/mol)

pE 45.0 0.31 0.96 62 3.9 0.15
pGE 25-75 57.3 0.33 1.38 53 6.8 0.18
pGE 50-50 65.4 0.51 1.60 27 5.9 0.36
pGE 75-25 79.7 0.85 2.70 14 2.8 0.72
pGET 20-60-20 103.2 0.15 2.12 153 14.4 0.07
pGET 40-40-20 106.3 0.19 2.39 108 10.1 0.10
pGET 53-27-20 120.3 0.22 2.59 96 8.7 0.12
pGET 60-20-20 130.9 0.22 2.51 77 6.8 0.15
pGEV 20-60-20 92.4 0.21 2.28 120 11.6 0.09
pGEV 40-40-20 84.8 0.29 2.28 64 6.3 0.16
pGEV 53-27-20 95.8 0.36 2.86 45 4.3 0.23
pGEV 60-20-20 107.5 0.41 3.40 42 3.9 0.26


