Supporting Information

Salen complexes of Zirconium and Hafnium: Synthesis, structural characterization and polymerization studies

Mrinmay Mandal,^{‡a} Venkatachalam Ramkumar^b and Debashis Chakraborty*^b

^{*a*}Department of Chemistry, Indian Institute of Technology Patna, Bihta 801103, Bihar, India. ^{*b*}Department of Chemistry, Indian Institute of Technology Madras, Chennai-600 036, Tamil Nadu, India. Fax: +044-22574202; Tel: +044-22574223; E-mail: dchakraborty@iitm.ac.in, debashis.iitp@gmail.com.

‡Current address: School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, United States.

Fig. S2 ¹³C NMR (100 MHz, CDCl₃) of Compound 1

Fig. S3 ESI-Mass spectrum of Compound 1

Fig. S4 ¹H NMR (400 MHz, CDCl₃) of Compound 2

Fig. S5 ¹³C NMR (100 MHz, CDCl₃) of Compound 2

Fig. S6 ESI-Mass spectrum of Compound ${\bf 2}$

Fig. S7 ¹H NMR (400 MHz, CDCl₃) of Compound 3

Fig. S8 ¹³C NMR (100 MHz, CDCl₃) of Compound 3

Fig. S9 ESI-Mass spectrum of Compound 3

Fig. S10 ¹H NMR (400 MHz, CDCl₃) of Compound 4

Fig. S11 ¹³C NMR (100 MHz, CDCl₃) of Compound 4

Fig. S12 ESI-Mass spectrum of Compound 4

Fig. S13 ¹H NMR (400 MHz, CDCl₃) of Compound 5

Fig. S14 ¹³C NMR (100 MHz, CDCl₃) of Compound 5

Fig. S15 ESI-Mass spectrum of Compound 5

Fig. S16 ¹H NMR (400 MHz, CDCl₃) of Compound 6

Fig. S17¹³C NMR (100 MHz, CDCl₃) of Compound 6

Fig. S18 ESI-Mass spectrum of Compound 6

Fig. S19 ¹H NMR (400 MHz, CDCl₃) of Compound 7

Fig. S20 ¹³C NMR (100 MHz, CDCl₃) of Compound 7

Fig. S21 ESI-Mass Spectrum of Compound 7

Fig. S22 ¹H NMR (400 MHz, CDCl₃) of Compound 8

Fig. S23 ¹³C NMR (100 MHz, CDCl₃) of Compound 8

Fig. S24 ESI-Mass Spectrum of Compound 8

Fig. S25 ¹H NMR (400 MHz, CDCl₃) of Compound 9

Fig. S26 ¹³C NMR (100 MHz, CDCl₃) of Compound 9

Fig. S27 ESI-Mass Spectrum of Compound 9

Fig. S28 Molecular structure of **2**; thermal ellipsoids were drawn at 30 % probability level. Selected bond lengths (Å) and bond angles (°): Zr(1)-Zr(2) 3.496(2), Zr(1)-N(1) 2.479(15), Zr(2)-N(2) 2.472(13), Zr(1)-O(1) 2.062(9), Zr(1)-O(5) 2.143(9), Zr(2)-O(2) 2.050(8), Zr(2)-O(5) 2.161(8), O(4)-Zr(2)-Zr(1) 102.3(3), O(3)-Zr(2)-Zr(1) 127.8(3), O(2)-Zr(2)-Zr(1) 126.8(3), O(5)-Zr(2)-Zr(1) 35.5(2), N(2)-Zr(2)-Zr(1) 82.8(3), N(1)-Zr(1)-Zr(2) 83.7(3), O(6)-Zr(1)-Zr(2) 101.2(3), O(7)-Zr(1)-Zr(2) 126.7(3).

Fig. S29 Molecular structure of **3**; thermal ellipsoids were drawn at 30 % probability level. Selected bond lengths (Å) and bond angles (°): N(1)-Zr(1) 2.4374(15), N(2)-Zr(1) 2.3928(14),

N(3)-Zr(1) 2.3960(14), N(4)-Zr(1) 2.4170(14), O(1)-Zr(1) 2.1011(12), O(2)-Zr(1) 2.1071(12), O(3)-Zr(1) 2.1082(12), O(4)-Zr(1) 2.0795(12), O(4)-Zr(1)-O(1) 95.61(5), O(4)-Zr(1)-O(3) 143.27(5), N(2)-Zr(1)-N(3) 129.73(5), N(3)-Zr(1)-N(4) 69.24(5).

Fig. S30 Coordination polyhedron of a distorted square antiprism geometry.

Fig. S31 Representative GPC traces for the polymerization of (a) *rac*-LA (entry 2, Table 1); (b) *L*-LA (entry 11, Table 1) and (c) ε -CL (entry 14, Table 1) using **2**.

Fig. S32 Plot of M_n and M_w/M_n vs. % conversion for *L*-LA, *rac*-LA and ε -CL polymerization using **2** at 140 °C (*L*-LA and *rac*-LA) and 80 °C (ε -CL).

Fig. S33 Plot of M_n and $M_w/M_n vs. [M]_0/[C]_0$ for *rac*-LA polymerization using **2**, **3**, **6** and **9** in the presence of benzyl alcohol at 140 °C.

Fig. S34 Homonuclear decoupled ¹H NMR spectra of PLA from *rac*-LA using 2 in CDCl₃.

Fig. S35 ¹H NMR spectrum of the crude product obtained from a reaction between *rac*-LA and **2** in 15: 1 ratio.

Fig. S36 MALDI-TOF of the crude product obtained from a reaction between *rac*-LA and **6** in 10: 1 ratio.

Fig. S37 ¹H NMR spectrum of the crude product obtained from a reaction between *rac*-LA and **6** in 10: 1 ratio.

Fig. S38 MALDI-TOF of the crude product obtained from a reaction between *rac*-LA and **2** in the presence of BnOH in 15: 1: 2 ratio.

Fig. S39 ¹H NMR spectrum of the crude product obtained from a reaction between *rac*-LA and **2** in the presence of BnOH in ratio 15: 1: 2.

Fig. S40 Representative GPC traces for the copolymerization of cyclohexene oxide and CO₂ using **3** (entry 6, Table 2) and **4** (entry 7, Table 2).

Fig. S41 MALDI-TOF mass spectrum of PCHC sample produced by **2** at 50 °C and 35 bar CO₂ pressure from CHO and CO₂ using TBAB as cocatalyst.

Fig. S42 ¹³C NMR spectrum of poly(cyclohexene carbonate) in the carbonate region produced from cyclohexene oxide and CO₂.

Fig. S43 Representative TGA trace and derivative plot of PCHC produced by 2 (Table 2, entry 2).

Fig. S44 Representative DSC trace of PCHC produced by 2, 2nd heat cycle (Table 2, entry 2).

Fig. S45 ¹³C NMR spectrum of an aliquot from the reaction mixture of SO/CO₂ in CDCl₃.

Fig. S46 ¹³C NMR spectrum of an aliquot from the reaction mixture of PO/CO₂ in CDCl₃.

Fig. S47 Representative GPC traces for the polymerization of (a) CHO (entry 3, Table 4); (b) PO (entry 12, Table 4) and (c) SO (entry 21, Table 4) using **3**.

Fig. S48 ¹H NMR (500 MHz, CDCl₃) of the crude product obtained from a reaction between CHO and **2** in 1000: 1 ratio at 80 °C.

Fig. S49 ¹H NMR (500 MHz, CDCl₃) of the crude product obtained from a reaction between PO and **2** in 1000: 1 ratio at 40 °C.

0

Fig. S50 ¹H NMR (500 MHz, CDCl₃) of the crude product obtained from a reaction between SO and **2** in 1000:1 ratio at 100 °C.

Fig. S51 ¹³C NMR (125 MHz, CDCl₃) Spectrum of the representative PCHO obtained from a reaction between CHO and **2** in 1000: 1 ratio at 80 °C.

Fig. S52 ¹³C NMR (125 MHz, CDCl₃) Spectrum of the representative PPO obtained from a reaction between PO and **2** in 1000: 1 ratio at 40 °C.

Scheme S1 Polymerization proceeds through the coordination-insertion mechanism for rac-LA.

Table S1 Crystal da	ita for the structures	of 1, 2, 3, 5, 6 and 9
---------------------	------------------------	------------------------

Compounds 1 2 3 5 6 9

Emperical	$C_{50}H_{88}N_2O_8Zr_2.$	$C_{38}H_{56}Br_{4}N_{2}O_{8}Zr_{2} \\$	$C_{32}H_{20}Cl_8N_4O_4Zr$	$C_{40}H_{28}Cl_8N_4O_4Zr$	$C_{28}H_{32}Br_4HfN_2O_4$	$C_{40}H_{32}Cl_8HfN_4O_4$
formula	C_7H_8					
Formula weight	1119.80	1170.93	899.34	1003.48	958.69	1094.79
Crystal system	Monoclinic	Monoclinic	Monoclinic	Orthorhombic	Monoclinic	Tetragonal
Space group	P2(1)/n	P2(1)/n	P2(1)/c	Fdd2	P2(1)/c	P-42(1)c
Temp/K	173(2)	173(2)	298(2)	173(2)	173(2)	173(2)
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
a (Å)	10.4865(3)	10.3571(4)	20.4732(6)	26.427(3)	11.9424(4)	11.3471(2)
<i>b</i> (Å)	30.3069(8)	12.8862(6)	12.5483(4)	46.619(5)	25.8050(10)	11.3471(2)
<i>c</i> (Å)	19.5427(5)	35.6573(14)	13.5794(4)	12.8792(11)	11.3456(3)	16.1552(5)
α (°)	90	90	90	90	90	90
β (°)	101.0420(10)	96.839(2)	105.4610(10)	90	111.2790(10)	90
γ (°)	90	90	90	90	90	90
$V(Å^3)$	6095.9(3)	4725.1(3)	3362.35(18)	15867(3)	3258.04(19)	2080.09(8)
Ζ	4	4	4	16	4	2
D_{calc} (g/cm ³)	1.220	1.646	1.777	1.680	1.954	1.748
Reflns collected	41638	16563	24858	57581	27332	6745
No. of indepreflns	12814	5938	8358	13823	10150	2335
GOF	0.954	1.169	1.049	1.024	1.013	0.650
F(000)	2384	2328	1792	8064	1832	1080
Final R	$R_1 = 0.0344,$	$R_1 = 0.0830,$	$R_1 = 0.0255$,	$R_1 = 0.0455,$	$R_1 = 0.0379,$	$R_1 = 0.0218$,
indices($I > 2\sigma(I)$)	$wR_2 = 0.1127$	$wR_2 = 0.1658$	$wR_2 = 0.0558$	$wR_2 = 0.1010$	$wR_2 = 0.0663$	$wR_2 = 0.0713$
R indices (all	$R_1 = 0.0457,$	$R_1 = 0.1106$,	$R_1 = 0.0356$,	$R_1 = 0.0691$,	$R_1 = 0.0720,$	$R_1 = 0.0301$,
data)	$wR_2 = 0.1255$	$wR_2 = 0.1752$	$wR_2 = 0.0608$	$wR_2 = 0.1134$	$wR_2 = 0.0747$	$wR_2 = 0.0835$
CCDC	1815596	1422872	1815597	1815598	1815600	1815603

 $R_I = \sum |F_0| - |F_c| / \sum |F_0|, \ wR_2 = \left[\sum (F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2\right]^{1/2}$

Table S2 Polymerization data based on changing ratios in case of *rac*-LA using **1**, **2**, **3**, **5**, **6** and **9** in the presence of benzyl alcohol at 140 °C.

Entry	Initiator	[M]/[C]/[BnOH] ratio	^a Time/min	Yield (%)	^b M _n ^{obs/} kgmol ⁻¹	^c M _n ^{theo/} kgmol ⁻¹	$M_{\rm w}/M_{\rm n}$
1	1	100: 1: 2	28	95	9.52	6.95	1.04
2	1	200: 1: 2	60	94	17.0	13.6	1.07
3	1	400: 1: 2	101	99	31.4	28.6	1.09
4	1	600: 1: 2	149	98	46.0	42.5	1.10
5	1	800: 1: 2	202	99	61.1	57.2	1.12
6	1	1000: 1: 2	265	97	75.5	70.0	1.13
7	2	100: 1: 2	24	98	11.1	7.17	1.02
8	2	200: 1: 2	51	96	18.0	13.9	1.05
9	2	400: 1: 2	90	99	33.9	28.6	1.07
10	2	600: 1: 2	135	99	49.4	42.9	1.05
11	2	800: 1: 2	188	97	63.0	56.0	1.09
12	2	1000: 1: 2	248	96	77.0	69.3	1.11
13	3	100: 1: 2	39	95	7.01	6.95	1.08
14	3	200: 1: 2	85	94	14.1	13.6	1.09

15	3	400: 1: 2	127	99	28.5	28.6	1.13
16	3	600: 1: 2	179	98	42.9	42.5	1.11
17	3	800: 1: 2	242	99	56.4	57.2	1.14
18	3	1000: 1: 2	305	97	71.2	70.0	1.16
19	5	100: 1: 2	34	98	8.01	7.17	1.06
20	5	200: 1: 2	70	99	15.0	14.4	1.08
21	5	400: 1: 2	112	95	29.2	27.5	1.10
22	5	600: 1: 2	163	94	43.9	40.7	1.09
23	5	800: 1: 2	220	99	57.8	57.2	1.12
24	5	1000: 1: 2	285	98	72.8	70.7	1.14
25	6	100: 1: 2	31	99	9.6	7.25	1.05
26	6	200: 1: 2	64	97	16.5	14.1	1.07
27	6	400: 1: 2	106	95	31.0	27.5	1.10
28	6	600: 1: 2	155	98	46.4	42.5	1.11
29	6	800: 1: 2	209	96	60.3	55.4	1.13
30	6	1000: 1: 2	270	95	74.7	68.6	1.15
31	9	100: 1: 2	37	97	7.66	7.10	1.09
32	9	200: 1: 2	79	97	14.3	14.1	1.11
33	9	400: 1: 2	124	94	29.0	27.2	1.15
34	9	600: 1: 2	171	95	43.3	41.2	1.17
35	9	800: 1: 2	235	98	57.2	56.6	1.19
36	9	1000: 1: 2	297	95	72.3	68.6	1.20

^{*a*}Time of polymerization measured by quenching the polymerization reaction when all monomer was found consumed. ^{*b*}Measured by GPC at 27 °C in THF relative to polystyrene standards after applying a multiplication factor of 0.58 (for *rac*-LA). ^{*c*} M_n (theoretical) at actual conversion = [Conversion × [M]₀/[C]₀ × mol. Wt. (monomer)] + mol. Wt. (BnOH).

 Table S3 DSC and TGA measurements for the different copolymers obtained in Table 2.

Entry	Initiator	Copolymers	T _g ^a	T_{d5}^{b}	T_{d50}^{b}	T_{d95}^{b}
			(°C)	(°C)	(°C)	(°C)
1	2	PCHC	55	92	187	>900
2	3	РСНС	48	85	179	>900
3	6	РСНС	52	90	185	>900
4	9	PCHC	50	88	182	>900

 aT_{g} values represent the midpoint temperature during the second heating cycle determined by DSC. ${}^{b}T_{d5}$, T_{d50} , and T_{d95} are the decomposition temperature at 5%, 50%, and 95% weight loss, respectively determined by TGA analysis.