SUPPORTING INFORMATION

Structure-pDNA complexation and structurecytotoxicity relationships of PEGylated, cationic aminoethyl-based polyacrylates with tunable topologies

Maël Le Bohec¹, Kévin Bonchouo Kenzo¹, Sandie Piogé¹, Simona Mura², Julien Nicolas², Nathalie Casse³, Gwénaël Forcher¹, Laurent Fontaine¹, Sagrario Pascual^{1,*}

 ¹ Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS – Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
 ² Institut Galien Paris-Sud, UMR 8612 CNRS, Faculté de Pharmacie, Université Paris-Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
 ³ Mer, Molécules et Santé, EA 2160 – Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France

*Corresponding author. E-mail: Sagrario.pascual@univ-lemans.fr

Figure S1. ¹H NMR spectrum (400 MHz, CDCl₃) of the α -alkynyl, ω -dodecyltrithiocarbonate-PEG obtained by esterification of the α -alkynyl, ω -hydroxyl-PEG with CDP using DCC and DMAP.

Figure S2. ¹H NMR spectrum (400 MHz, CDCl₃) of POEGA synthesized by RAFT polymerization of OEGA with ACVA and COPYDC ($[OEGA]_0/[COPYDC]_0/[ACVA]_0 = 30/1/0.1$) in DMF at 70 °C. $DP_{n,POEGA} = 12$ was calculated by comparing the integration area values of the signal at 0.88 ppm corresponding to the methyl protons $S(CH_2)_{11}CH_3$ and of the signal at 4.17 ppm corresponding to the methylene protons $CH=CCH_2NHC(=O)$ and $CH_2CH_2O(CH_2CH_2O)_8CH_3$.

Figure S3. Overlaid of ¹H NMR spectra (400 MHz, CDCl₃) between 4.6 and 8.5 ppm of the crude mixture of RAFT copolymerization of DMAEA and *t*BocAEA using IPEG-CTA as the macromolecular chain transfer agent and ACVA as the initiator at 70°C in 1,4-dioxane and DMF using $[DMAEA]_0/[tBocAEA]_0/[IPEG-CTA]_0/[ACVA]_0 = 50/50/1/0.2$. Total of conversion of DMAEA and *t*BocAEA was determined to be 22% by comparing the integration areas of vinylic proton of DMAEA and *t*BocAEA at 5.81-6.46 ppm and with the integral area value of the CH of DMF at 8.02 ppm.

Figure S4. Overlaid SEC traces using RI detection (top) and UV-vis detection (fixed at 309 nm, bottom) of IPEG-CTA (dash line) and IPEG-*b*-P(DMAEA-*co*-*t*BocAEA) (solid line) synthesized by RAFT copolymerization of DMAEA and *t*BocAEA using IPEG-CTA and ACVA at 70 °C in 1,4-dioxane and DMF with $[DMAEA]_0/[tBocAEA]_0/[IPEG-CTA]_0/[ACVA]_0 = 50/50/1/0.2$.

Figure S5. ¹H NMR spectrum (400 MHz, CDCl₃) of purified IPEG-*b*-P(DMAEA-*cot*BocAEA) synthesized by RAFT copolymerization of DMAEA and *t*BocAEA using IPEG-CTA as the macromolecular chain transfer agent and ACVA as the initiator in 1,4-dioxane and DMF at 70 °C with [DMAEA]₀/[*t*BocAEA]₀/[IPEG-CTA]₀/[ACVA]₀ = 50/50/1/0.2. $DP_{n,PDMAEA}$ (= 11) and $DP_{n,tBocAEA}$ (= 12) were determined by comparing the integration area values of the signal of CH₃CHC(=O)NH at 5.10 ppm, of the signal of OCH₂CH₂NHC(=O)O and of SCH₂(CH₂)₁₀CH₃ at 3.35 ppm and of the signal of CH₂CH₂OC(=O) , of OCH₂CH₂N(CH₃)₂ and of OCH₂CH₂NH at 4.16 ppm.

Figure S6. Overlaid ¹H NMR spectra (400 MHz, CDCl₃) between 5.4 and 8.6 ppm of the crude mixture of RAFT polymerization of DMAEA and *t*BocAEA using bPEG-CTA as the macromolecular chain transfer agent and ACVA as the initiator in 1,4-dioxane and DMF at 70 °C using $[DMAEA]_0/[tBocAEA]_0/[bPEG-CTA]_0/[ACVA]_0 = 50/50/1/0.2$. Total conversion of DMAEA and *t*BocAEA were determined to be 20% by comparing the integration areas of vinylic proton of DMAEA and *t*BocAEA at 5.79-6.52 ppm and with the integral area value of the CH of DMF at 8.02 ppm.

Figure S7. Overlaid of SEC traces using RI detection (top) and UV-vis detection (fixed at 309 nm, bottom) of bPEG-CTA (dash line) and bPEG-*b*-P(DMAEA-*co*-*t*BocAEA) (solid line) synthesized by RAFT copolymerization of DMAEA and *t*BocAEA using bPEG-CTA and ACVA in 1,4-dioxane and DMF at 70 °C with $[DMAEA]_0/[tBocAEA]_0/[bPEG-CTA-CTA]_0/[ACVA]_0 = 50/5/1/0.2$.

Figure S8. ¹H NMR spectrum (400 MHz, CDCl₃) of bPEG-*b*-P(DMAEA-*co*-*t*BocAEA) synthesized by RAFT copolymerization of DMAEA and *t*BocAEA using bPEG-CTA as the macromolecular chain transfer agent and ACVA as the initiator in 1,4-dioxane and DMF at 70°C with [DMAEA]₀/[*t*BocAEA]₀/[bPEG-CTA]₀/[ACVA]₀ = 50/50/1/0.2. $DP_{n,PDMAEA}$ (= 10) and $DP_{n,tBocAEA}$ (= 10) were determined by comparing the integration area values of the signal of CH_2CH_2O units at 3.64 ppm, of the signal of (CH₂CH₂O)₉CH₃, of OCH₂CH₂NH, of SCH₂(CH₂)₁₀CH₃ at 3.38 ppm, and of the signal of HC=CCH₂NH, of OCH₂CH₂O(CH₂CH₂O)₈ of OCH₂CH₂NH at 4.16 ppm.

Figure S9. Overlaid of ¹H NMR spectra (400 MHz, CDCl₃) between 5.4 and 8.6 ppm of the crude mixture of RAFT copolymerization of DMAEA and *t*BocAEA using COPYDC as the chain transfer agent and ACVA as the initiator in 1,4-dioxane and DMF at 70 °C using $[DMAEA]_0/[tBocAEA]_0/[COPYDC]_0/[ACVA]_0 = 50/50/1/0.2$. Total conversion of DMAEA and *t*BocAEA were determined to be 19% by comparing the integration areas of vinylic proton of DMAEA and *t*BocAEA at 5.79-6.52 ppm and with the integral area value of the CH of DMF at 8.02 ppm.

Figure S10. Overlaid SEC traces of purified P(DMAEA-*co-t*BocAEA) (solid line: RI response, dash line: UV-vis response at 309 nm) obtained by RAFT copolymerization of DMAEA and *t*BocAEA using COPYDC as RAFT agent, ACVA as the initiator in DMF at 70 °C. $([DMAEA]_0/[tBocAEA]_0/[COPYDC]_0/[ACVA]_0 = 50/50/1/0.2).$

Figure S11. ¹H NMR spectrum (400 MHz, CDCl₃) of purified P(DMAEA-*co-t*BocAEA) synthesized by RAFT copolymerization of DMAEA and *t*BocAEA mediated through COPYDC as the chain transfer agent and ACVA as the initiator in DMF at 70 °C using $[DMAEA]_0/[tBocAEA]_0/[COPYDC]_0/[ACVA]_0 = 50/50/1/0.2$. $DP_{n,PDMAEA} = 10$) and $DP_{n,tBocAEA}$ (= 12) were determined by comparing the integration area values of the signal of SCH₂(CH₂)₁₀CH₃ at 0.88 ppm, of the signal of OCH₂CH₂NH, of SCH₂(CH₃)₂, of CH₂CH₂NH at 4.16 ppm.

Figure S12. Overlaid ¹H NMR spectra (400 MHz) of P(DMAEA-*co-t*BocAEA) (top, CDCl₃) and P(DMAEA-*co*-AEA) (bottom, D₂O).

Figure S13. Overlaid of ¹H NMR spectra (400 MHz) of IPEG-*b*-P(DMAEA-*co*-*t*BocAEA) in CDCl₃ (top) and IPEG-*b*-P(DMAEA-*co*-AEA) in D₂O (bottom).

Figure S14. Overlaid ¹H NMR spectra (400 MHz) of bPEG-*b*-P(DMAEA-*co*-*t*BocAEA) (CDCl₃, top) and bPEG-*b*-P(DMAEA-*co*-AEA) (D₂O, bottom).

Figure S15. DLS number-average diameter distribution of the pDNA/IPEG-*b*-P(DMAEA-*co*-AEA) polyplex (N/P = 3)

N/P	$V_{pDNA} (\mu L)$	$V_{DNA \text{ loading}}(\mu L)$	$V_{pH buffering}(\mu L)$	$V_{copolymer solution}(\mu L)$
0	2	2	7	0
1	2	2	5	2
2	2	2	3	4
3	2	2	1	6
4	2	2	0	8
5	2	2	0	10
6	2	2	0	12
7	2	2	0	14
8	2	2	0	16

Table S1. Preparation of pDNA/polymer polyplexes at different N/P ratios.