Supporting information

Pushing the limits of robust and eco-friendly ATRP processes: untreated water as the solvent

Patrícia V. Mendonça,^{[a]*} Andreia S. R. Oliveira,^[a] Jessica P. M. Ribeiro,^[a] Ana Castilho,^[b] Arménio C. Serra^[a] and Jorge F. J. Coelho^[a]

^a CEMMPRE, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal

^b Geosciences Centre, Department of Earth Sciences, University of Coimbra, 3030-790 Coimbra, Portugal

* E-mail address: <u>patmend@eq.uc.pt</u>

1. Water analyses

Table S1. pH, EC and pE of the different sources of water investigated for the SARA ATRP.

Water source	pН	EC (µS/cm)	pE
Deionized water	6.0	1.7	9.92
Mondego river	7.2	125	7.45
Miranda stream	7.2	78	7.45
Sea	7.5	52800	6.90
Rain	6.9	32	7.89
Leiria spring	6.7	141	8.18

		Water source						
		Deionized water	Mondego river	Miranda stream	Sea	Rain (µmol/L) [*]	Leiria spring	
[Ion] (mmol/L)	Ca ²⁺	< 0.007	0.162	0.10	9.18	43/40	0.077	
	Mg ²⁺	< 0.004	0.123	0.082	51.47	28/20	0.119	
	K ⁺	< 0.003	0.049	0.021	10.18	7/40	0.010	
	Na ⁺	< 0.013	0.387	0.318	507.1	109/150	0.783	
	Li ⁺	< 0.007	< 0.007	< 0.007	< 0.07	-/-	< 0.007	
	$\mathrm{NH_4}^+$	< 0.003	< 0.003	0.009	< 0.02	-/250	< 0.003	
	F	< 0.011	< 0.011	< 0.011	< 0.11	-/-	< 0.011	
	Cl	< 0.056	0.330	0.243	528.21	90/170	0.649	
	NO ₃ ⁻	< 0.016	0.076	0.044	< 0.16	-/20	0.077	
	SO4 ²⁻	< 0.021	0.107	0.056	27.59	55/50	0.036	
	Br⁻	< 0.001	0.001	< 0.001	0.60	-/-	0.005	
	PO ₄ ³⁻	< 0.002	< 0.002	< 0.002	< 0.002	-/-	< 0.002	

Table S2. Ion concentration for deionized water and untreated waters used aspolymerization solvent in ATRP reactions.

*Values obtained in the literature and expressed in μ mol/L^{1,2}

Fig. S1. Stiff diagrams of the untreated waters used for the SARA ATRP of AMPTMA.

2. Characterization of polymers

Fig. S2. 400 MHz ¹H NMR spectrum, in D₂O, of a pure PAMPTMA-Br ($M_n^{\text{SEC}} = 42.3 \text{ x}$ 10³; $\mathcal{D} = 1.10$) prepared by Cu(0)-catalyzed SARA ATRP in water from the Mondego river.

Fig. S3. Molecular weight distribution of PAMPTMA macroinitiator (conv._{AMPTMA} = 99%; $M_n^{\text{th}}_{\text{macroinitiator}} = 20.1 \times 10^3$) and PAMPMTA₉₆-*b*-POEOA₇₈ (conv._{OEOA480} = 98%; $M_n^{\text{th}}_{\text{copolymer}} = 57.7 \times 10^3$) obtained after "one-pot" chain extension by SARA ATRP in water from the Mondego river.

Fig. S4. 400 MHz ¹H NMR spectrum, in D₂O, of a pure POEOA-Br ($M_n^{\text{SEC}} = 65.5 \text{ x}$ 10³; $\mathcal{D} = 1.20$) prepared by Na₂S₂O₄-catalyzed SARA ATRP in water from the Mondego river.

Fig. S5. 400 MHz ¹H NMR spectrum, in D₂O, of a pure PEG-*b*-PAMA ($M_n^{\text{SEC}} = 21.3 \text{ x}$ 10³; $\mathcal{D} = 1.16$) prepared by ARGET ATRP in water from the Mondego river.

Fig. S6. 400 MHz ¹H NMR spectrum, in D₂O, of a pure PHEA-Br ($M_n^{\text{SEC}} = 26.9 \times 10^3$; D = 1.19) prepared by Cu(0)-catalyzed SARA ATRP in water from the Mondego river.

References

- 1. M. T. C. de Melo, M. A. M. da Silva and W. M. Edmunds, *Phys. Chem. Earth PT B*, 1999, **24**, 331-336.
- A. Vázquez, M. Costoya, R. M. Peña, S. García and C. Herrero, *Chemosphere*, 2003, 51, 375-386.