Supporting information

Synthesis of cellulose nanocrystal armored latex particles for

mechanically strong nanocomposite films

Elodie Limousin, Nicholas Ballard*, José M. Asua

Figure S1: Data from Figure 2 of the main manuscript showing the zeta potential of different solutions of cellulose nanocrystals with variation of 2,2'-Azobis(2-methylpropionamidine) dihydrochloride plotted as a function of CNC/AIBA charge ratio.

Figure S2: a) TEM image of particles from latex L0 (scale bar: 500 nm) and b) Particle size distribution

Figure S3: a) TEM image of CNCs stabilized particles from latex L1 (scale bar: 500 nm) and b) Particle size distribution

3

b)

and c) Particle size distribution

0+ 0

100

200

0 300 4 Particle size (nm)

Figure S5: TEM imagess of CNCs stabilized particles from latex L5 (scale bar: a): 500 nm, and b) 100 nm) and c) Particle size distribution

500

400

600

Figure S6: TEM image of CNCs stabilized particles from latex L6 (scale bar: 500 nm)

Figure S7: TEM images of CNCs stabilized particles from latex L7 (scale bar: a): 500 nm, and b) 100 nm) and c) Particle size distribution

Figure S8: a) TEM image of CNCs stabilized particles from latex L9 (scale bar: 500 nm) and b) Particle size distribution

	1.5	15.100.1	15.102.1	15.101.1	15.101.2	10
	LJ	LJ.LU 9.1	LJ.LU 2.1	L3.L0 1.1	LJ.LU 1.2	LU
CNCs (wbm %)	20	18	13.3	10	6.66	0
Particle size per number (d _n , nm)	160					417
Particle size per weight (d_w , nm)	233					433
Polydispersity (d _w /d _n)	1.45					1.04
Tg (°C)	35	29	28	28	25	18
Zeta potential (mV)	-31	-32.5	-33	-29.7	-21.4	42.1

Table S1: Characteristics of the latexes and blends used

Figure S9: Films cast from latex L5 at 55% humidity and a) 23°C and b) 65°C

Figure S10: Stress-strain curve for the latex L0 dried at 23 °C and 55% relative humidity for 7 days

Figure S11: Themogravimetric analysis curves of the films dried at 65 °C for 24h

Figure S12 DSC and first derivative showing the variation in glass transition temperature.for films cast from latex L0 , L5 and their blends.