Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Postpolymerization Modification Based on Dynamic Imine Chemistry for Synthesis of Functional Polyacetylenes

Juntao Ren, ^{a,b} Baojian Ni, ^a Heng Liu, ^a Yanming Hu, ^{a*} Xuequan Zhang, ^{a*} and Toshio Masuda^c

^a CAS Key Laboratory of Synthetic Rubber, Changchun Institute of Applied
 Chemistry, Chinese Academy of Sciences, Changchun 130022, China
 ^b University of Science and Technology of China, Hefei 230026, China
 ^c College of Materials Science and Engineering, Shanghai University, Shanghai
 200444, China

*Email: ymhu@ciac.ac.cn; xqzhang@ciac.ac.cn

Table S1 The reaction between PVM and 1-phenylethanamine at 30 °C.a

Solventb	CD ₃ CN	THF	CDCl ₃
Ad ^c %	100 ^d	88 ^d	59 ^d

^a The concentration of all the reagents was 60 mmol/L. ^b Water content below 1 HNMR detection limits. ^c Reaction advancement degree (%) calculated as $(I_{t}/I_{e}) \times 100$, where I_{t} and I_{e} are the normalized intensity of the CH=N signal at t = 30 min and at equilibrium, respectively. d PVEM at equilibrium was 28.5 mmol/L.

Table S2. Synthesis of P1a-P1e through transimination of P1 with various amines.^a

Amine	Product	Yield (%)	$M_{\rm n}^{\rm b} \times 10^{-3}$	$M_{ m w}/M_{ m n}$
(S)-1-phenylethanamine	P1a	96.5	26.2	2.6
(R)-1-phenylethanamine	P1b	95.2	24.1	2.5
(S)-2-amino-2-phenylethanol	P1c	90.5	29.1	2.8
(S)-1-(naphthalen-2-yl)ethanamine	P1d	91.7	32.7	2.7
4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl	P1e	91.5	_ c	-

^a Reactions were carried out in THF at 30 °C for 12 h under nitrogen, 2.0 equiv of amine relative to the imine units in **P1**. ^b Estimated by GPC eluted with THF on the basis of polystyrene calibration. ^c insoluble in THF.

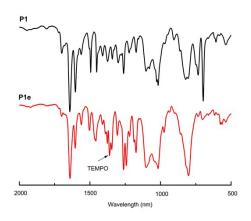


Figure S1. IR spectra of P1 and P1e.

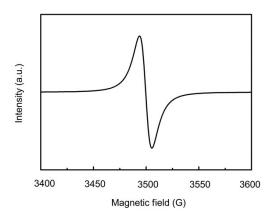


Figure S2. ESR spectrum of **P1e** measured in the powder state.

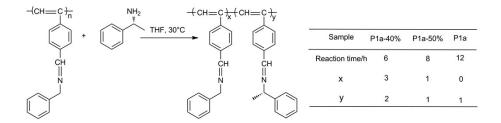


Figure S3. Synthesis of P1a-40%, P1a-50%, and P1a

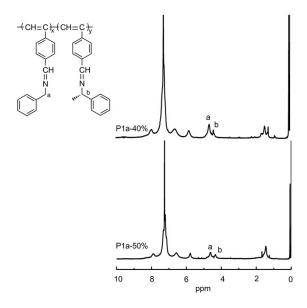


Figure S4. ¹H NMR spectra of **P1a-40%** and **P1a-50%**

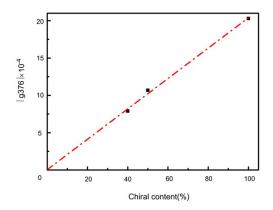


Figure S5. Plot of Kuhn dissymmetry factor ($g = [\theta]/(3300 \times \varepsilon)$) at 376 nm of **P1a-40% P1a-50%** and **P1a** in THF against chiral content. The dotted line is shown simply to guide the eye.

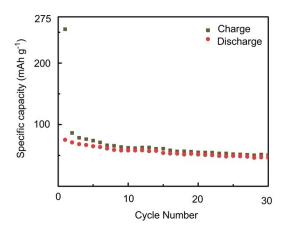


Figure S6. Dependence of capacity on the cycle number of **P1e**. Charging and discharging were repeated at a 50 mA/g current density in a range of 3.3-4.4 V cell voltage.