Supporting information:

Fluorinated polymer networks with largely improved energy densities using facile urethanebased crosslinking of poly(vinylidene fluoride-*co*vinyl alcohol)

Niels L. Meereboer^a, Ivan Terzić^a, Katja Loos^a*

^aMacromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

*Email: k.u.loos@rug.nl

Figure S1. ¹H NMR spectrum of P(VDF₈₅-co-VAc₁₅)

Figure S2. ¹H COSY spectrum of P(VDF₈₅-co-VAc₁₅)

Figure S3. ¹H COSY spectrum of P(VDF₈₅-co-VA₁₅)

Figure S4. ¹⁹F NMR spectra of P(VDF₈₅-co-VAc₁₅) and P(VDF₈₅-co-VA₁₅)

Figure S5. Polarization – Electric Field loops of C05 at high electric field.

Figure S6. Polarization – Electric Field loops of C1 at high electric field.

Figure S7. Unipolar Polarization – Electric Field loops of P(VDF-co-VA)

Figure S8. Unipolar Polarization – Electric Field loops of C05

Figure S9. Unipolar Polarization – Electric Field loops of C1

Figure S10. Unipolar Polarization – Electric Field loops of C20