Supplementary Information

R–Cl/SnCl₄/*n*-Bu₄NCl-induced direct living cationic polymerization of naturally-derived unprotected 4-vinylphenol, 4-vinylguaiacol, and 4-vinylcatechol in CH₃CN

Hisaaki Takeshima,^a Kotaro Satoh,^{*a} and Masami Kamigaito^{*a}

^aDepartment of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

e-mail: satoh@chembio.nagoya-u.ac.jp, kamigait@chembio.nagoya-u.ac.jp

Contents:

Fig. S1	······S2
Fig. S2	······S2
Fig. S3	······S3
Fig. S4	······S3
Fig. S5	······S4

Fig. S1. SEC curves of the polymers obtained in direct cationic polymerization of unprotected pHOS using pMOS–HCl and MtCl_n in the absence and presence of additives in CH₃CN/CH₂Cl₂ = 9/1 at -40 °C: [pHOS]₀/[pMOS–HCl]₀ = 500/10 mM; [SnCl₄]₀ = 20 mM (A), [SnCl₄]₀/[*n*-Bu₄NCl]₀ = 20/16 mM (B), [SnCl₄]₀/[*n*-Bu₄NCl]₀ = 20/30 mM (C), [SnCl₄]₀/[EtOAc]₀ = 20/1000 mM (D), [ZnCl₂]₀ = 20 mM (E), [ZnCl₂]₀/[*n*-Bu₄NCl]₀ = 20/16 mM (F), [TiCl₄]₀ = 20 mM (G), [TiCl₄]₀/[*n*-Bu₄NCl]₀ = 20/16 mM (H). *M*_n(corr.) was determined by SEC using polystyrene standard and the calibration factor (*f* = 0.396).

Fig. S2. Reaction mixture of pHOS: $[pHOS]_0/[pMOS-HCl]_0 = 500/10 \text{ mM}$ in CH₃CN/CH₂Cl₂ = 9/1 at -40 °C, $[SnCl_4]_0/[n-Bu_4NCl]_0 = 20/30 \text{ mM}$, or $[TiCl_4]_0/[n-Bu_4NCl]_0 = 20/30 \text{ mM}$.

Fig. S3. SEC curves for cationic polymerization of pMOS with pMOS-HCl/SnCl₄/n-Bu₄NCl the absence in and presence of phenol: $[pMOS]_0/[pMOS-HCl]_0/[SnCl_4]_0/[n-Bu_4NCl]_0/[phenol]_0 = 500/10/10/15/0 \text{ or } 500 \text{ mM in}$ CH₂Cl₂ at -40 or [pMOS]₀/[pMOS-HCl]₀/[SnCl₄]₀/[*n*-Bu₄NCl]₀/[phenol]₀ °C = 500/10/20/30/0 or 500 mM in CH₃CN/CH₂Cl₂ = 9/1 at -40 °C.

Fig. S4. Time-conversion curve and M_n , M_w/M_n , and SEC curves for direct cationic polymerization of unprotected 4VC with pMOS–OH/BF₃OEt₂ in CH₃CN in the presence of water: $[4VC]_0/[pMOS-HCl]_0/[BF_3OEt_2]_0/[H_2O]_0 = 200/4.0/2.0/200 \text{ mM}$ in CH₃CN at 0 °C. M_n (corr.) was determined by SEC using polystyrene standard and the calibration factor (f = 0.410).

Fig. S5. ¹H NMR spectra (DMSO-*d*₆, 70 °C) of poly(4VG) (A) and poly(4VC) (B) obtained with pMOS-HCl/SnCl₄/*n*-Bu₄NCl in CH₃CN/CH₂Cl₂ = 9/1 at -40 °C.