Supporting information for

Reassembled nanoporous gold leaf electrocatalyst for efficient CO₂ reduction

Xiaosong Wen^{a,b§}, Lin Chang^{a§}, Yan Gao^{a*}, Jianyu Han^a, Zhiming Bai^{b*}, Yahuan Huan^b, Minghua Li^b, Zhiyong Tang^a, Xiaoqin Yan^{b*}

^a Laboratory of Nanomaterials, National Center for Nanoscience and Technology,

Beijing, 100190 P. R China

*Corresponding author. E-mail: gaoyan@nanoctr.cn

^bSchool of Materials Science and Engineering, University of Science and Technology

Beijing, Beijing 100083, P. R. China.

*Corresponding author. E-mail: xqyan@mater.ustb.edu.cn

^c School of Civil and Resource Engineering, University of Science and Technology

Beijing, Beijing 100083, P. R. China.

*Corresponding author. E-mail: baizhiming2008@126.com §Both authors contributed equally to this work.

Figure S1. Optical images of NPGL before (a) and after (b) de-alloying for 4 h in nitric acid.

Figure S2. CO FE (left axis) and H_2 FE (right axis) of NPGL de-alloyed for different time at -1.2 V (*vs*.Ag/AgCl).

Figure S3.Top down SEM images of NPGL de-alloyed for different time in nitric acid.

Figure S4. The CO₂ reduction activity of NPGL at -1.2 V (vs. Ag/AgCl) for 6 h.

Figure S5. SEM images of NPGL before and after electrolysis at -1.2 V (vs. Ag/AgCl).

Figure S6. XRD patterns of NPGL before and after electrolysis at -1.2 V (vs. Ag/AgCl).

Figure S7. The relation of the electrochemical surface area of NPGL to etching time.

Sample type	Solution (pH)	V>90% (vs. RHE)	j _{co} (mA cm ⁻²)	<i>j</i> _{со} (А g ⁻¹)	Tafel slope (mV dec ⁻¹)	Ref
NPGL (4 h)	0.5 M NaHCO ₃ (7.2)	-0.57V	1.8	21	117	This work
Oxide-derived Au	0.5 M NaHCO ₃ (7.2)	-0.35V	~2.25	N/A	56	1
Au25 cluster	0.1 M KHCO3 (7.0)	-0.88V	N/A	N/A	N/A	2
Au/CNT	0.5 M NaHCO ₃ (7.2)	-0.45V	N/A	35	N/A	3
Monodisperse Au NP (8 nm)	0.5 M KHCO ₃ (7.3)	-0.67V	N/A	14	N/A	4
Mesostructured Au (1.6 µm)	0.1 M KHCO ₃ (6.8)	-0.45V	0.004	N/A	N/A	5
Concave RD Au	0.5 M KHCO ₃ (7.3)	-0.57V	0.1~0.2	~9	N/A	6
Nanoporous RA-Au (70 m)	0.2 M KHCO ₃ (6.8)	-0.59V	0.13	N/A	81	7

Table S1. Comparison of various Au catalysts for CO₂ reduction.

References

- 1. Y. Chen, C. W. Li and M. W. Kanan, J. Am. Chem. Soc., 2012, **134**, 19969-19972.
- 2. D. R. Kauffman, D. Alfonso, C. Matranga, H. Qian and R. Jin, *J. Am. Chem. Soc.*, 2012, **134**, 10237-10243.
- 3. X. Feng, K. Jiang, S. Fan and M. W. Kanan, J. Am. Chem. Soc., 2015, 137, 4606-4609.
- 4. W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson and S. Sun, *J. Am. Chem. Soc.*, 2013, **135**, 16833-16836.
- A. S. Hall, Y. Yoon, A. Wuttig and Y. Surendranath, J. Am. Chem. Soc., 2015, 137, 14834-14837.
- 6. H.-E. Lee, K. D. Yang, S. M. Yoon, H.-Y. Ahn, Y. Y. Lee, H. Chang, D. H. Jeong, Y.-S. Lee, M. Y. Kim and K. T. Nam, *ACS Nano*, 2015, **9**, 8384-8393.
- 7. J. T. Song, H. Ryoo, M. Cho, J. Kim, J.-G. Kim, S.-Y. Chung and J. Oh, *Adv. Energy Mater.*, 2017, **7**, 1614-6832.