High-Stable Y(III)-Based Metal Organic Framework with Two Molecular Building Block for Selective Adsorption of C₂H₂ and CO₂ over CH₄

Xing Duan,^{a*} Ran Lv^a, Zhenguo Ji^{a*}, Bin Li,^b Yuanjing Cui,^b Yu Yang^b and Guodong Qian ^{b*}

^a College of materials & environmental engineering, Hangzhou Dianzi University, Hangzhou, 310027, P. R. China. E-mail: star1987@hdu.edu.cn

^b State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and

Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou,

310027, P. R. China. E-mail: gdqian@zju.edu.cn

Derivation of the isosteric heats of adsorption

A virial-type expression of the following form was employed to calculate the enthalpies of adsorption of C_2H_2 , CO_2 and CH_4 . The data were fitted using the equation:

$$\ln P = \ln N + \frac{1}{T \sum_{i=0}^{m} a_{i} N^{i}} + \sum_{i=0}^{n} b_{i} N^{i}$$
(1)

where the *p* is pressure expressed in mmHg, *N* is the amount adsorbed in mmol g^{-1} , *T* is the temperature in K, a_i and b_i are virial coefficients, *m*, *n* represents the number of coefficients required to adequately describe the isotherms. The isosteric heat of adsorption, Q_{st} , defined as

$$Q_{st} = RT^2 \left(\frac{\partial \ln P}{\partial T}\right) \tag{2}$$

Here, Q_{st} is the coverage-dependent isosteric heat of adsorption and *R* is the universal gas constant of 8.3147 J K⁻¹ mol⁻¹.

Fitting of pure component isotherms

The adsorption isotherms for C_2H_2 , CO_2 and CH_4 in **ZJU-16a** were measured at 273 and 298 K and fitted on the basis of the dual site Langmuir-Freundlich equation:

$$N = N_{1}^{\max} \times \frac{b_{1}p^{1/n_{1}}}{1 + b_{1}p^{1/n_{1}}} + N_{2}^{\max} \times \frac{b_{2}p^{1/n_{2}}}{1 + b_{2}p^{1/n_{2}}}$$
(3)

where *p* is the pressure of the bulk gas at equilibrium with the adsorbed phase in kPa, *N* is the adsorbed amount per mass of adsorbent in mol/kg, N_1^{max} and N_2^{max} are the saturation capacities of sites 1 and 2 in mol/kg, b_1 and b_2 are the affinity coefficients of sites 1 and 2 in 1/kPa, and n_1 and n_2 represent the deviations from an ideal homogeneous surface. The fitting parameters of DSLF equation are presented in Table S1.

Adsorption isotherms and gas selectivities calculated by Ideal Adsorbed Solution Theory (IAST) for mixed C_2H_2/CH_4 ($C_2H_2/CH_4 = 50:50$) and CO_2/CH_4 ($CO_2/CH_4 = 50:50$) in the **ZJU-16a.** The adsorption selectivities, S_{ads} , are defined by the following equation:

$$S_{ads} = \frac{q_1/q_2}{p_1/p_2}$$
 (4)

in which p_i the bulk gas pressure of species *i*, and q_i the component molar loading of species *i*. *Table1 S1*. Crystallographic Data Collection and Refinement Results for ZJU-16.

	ZJU-16
Chemical formula	$C_{24}H_{12}Y_2N_3O_{10.5}$
Formula weight	688.19
Temperature (K)	293(2)
Wavelength (Å)	0.71073
Crystal system	Hexagonal
Space group	P 6 ₃ /mmc
<i>a</i> (Å)	22.3597(3)
<i>b</i> (Å)	22.3597(3)

	<i>c</i> (Å)			28.2591(12)			
	$V(\text{\AA}^3)$		12235.5(6)				
	Ζ		12				
	Density (calculated g/cm ³)		1.121				
	Absorbance coefficient (mm ⁻¹)		2.872				
	F(000)		4068				
	Crystal size(mm ³)		0.23×0.23×0.1				
	Goodness of fit on F^2		1.106				
	$R_1, wR_2[I > 2\sigma(I)]$		0.0893,0.2938				
	R_1 , wR_2 (all data)		0.1378,0.3202				
	Largestdifference peak and		4.466,-1.331				
hole(e/Å ³)							
Table S2. Equation parameters for the DSLF isotherm model.							
Adsorbates	N_1^{max}	b_1	n_1	N_2^{max}	b ₂	n ₂	
	(mmol/g)	(kPa-1)		(mmol/g)	(kPa-1)		
C ₂ H ₂ (273 K)	2.77852	0.0002931	1.092885	3.03734	0.062	0.84566	
CO ₂ (273 K)	5.9613	0.00091124	1.1126	25.45111	0.00296	0.78477	
CH ₄ (273 K)	3.32223	0.00058575	1.019	1.79403	0.00251	0.9968	
C ₂ H ₂ (298 K)	25.5115	0.00114	0.91943	1.40662	0.02751	0.82859	
CO ₂ (298 K)	9.79892	0.00184	0.95983	9.73881	0.00171	0.71355	
CH ₄ (298 K)	10.36924	0.00017505	1.18464	0.28741	0.01241	1.10857	

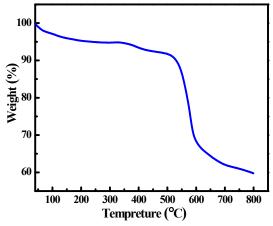
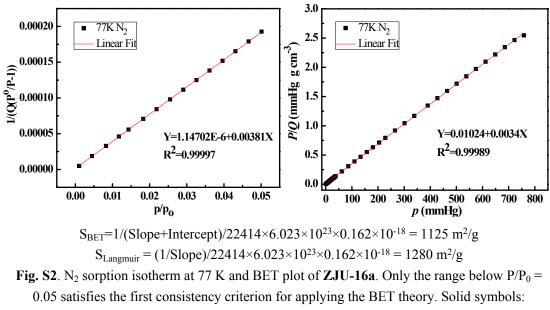



Fig. S1. TGA curves of as-synthesized **ZJU-16**.

adsorption, open symbols: desorption

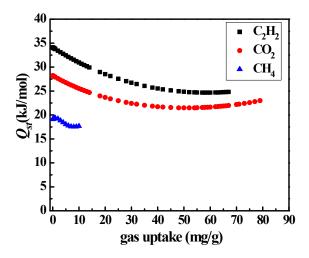


Fig. S3 the isosteric heats of adsorption of C₂H₂, CH₄ and CO₂ calculated using the virial method.